首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    《中国图象图形学报》医学图像及临床应用专刊简介

    沈定刚刘天明周涛夏勇...
    653-654页

    中国医学影像人工智能20年回顾和展望

    蒋希袁奕萱王雅萍肖振祥...
    655-671页
    查看更多>>摘要:在过去20年里,医学影像技术、人工智能技术以及这两项技术相结合的临床应用都取得了长足发展.中国在该领域的研究也取得卓越成就,并且在全世界范围内的贡献比例仍在逐步提高.为了记录和总结国内同行的科研成果,本文对中国医学影像人工智能过去20年的发展历程进行回顾和展望.重点分析了国内同行在公认的医学影像人工智能领域的国际顶级刊物Medical Image Analysis(MedIA)和IEEE Transactions on Medical Imaging(TMI)以及顶级会议Medical Image Computing and Computer Assisted Intervention(MICCAI)发表的论文,定量统计了论文发表数量、作者身份、发表单位、作者合作链、关键词和被引次数等信息.同时总结了近20年中国医学影像人工智能发展进程中的重要事件,包括举办的医学影像人工智能知名国际和国内会议、《中国医学影像AI白皮书》的发布以及国内同行在COVID-19(corona virus disease 2019)期间的贡献,最后展望了中国医学影像人工智能领域未来的发展趋势.上述统计结果系统性地反映了在过去20年里中国在医学影像人工智能领域所取得的突出成绩.许多研究论文的作者将数据和源代码公开给全世界共享,为全世界医学影像人工智能的科研和教学做出了杰出贡献.通过本文中国医学影像人工智能领域的发展历程,可为医学影像人工智能同行,尤其为新一代的学者和学生提供科研和教学参考,也为继续促进和加强国际合作交流,为全世界该领域进一步的蓬勃发展做出重要贡献.

    医学影像人工智能(AI)发展历程国际合作定量统计

    迁移学习在医学图像分类中的研究进展

    黎英宋佩华
    672-686页
    查看更多>>摘要:医学影像作为医疗数据的主要载体,在疾病预防、诊断和治疗中发挥着重要作用.医学图像分类是医学影像分析的重要组成部分.如何提高医学图像分类效率是一个持续的研究问题.随着计算机技术进步,医学图像分类方法已经从传统方法转到深度学习,再到目前热门的迁移学习.虽然迁移学习在医学图像分类中得到较广泛应用,但存在不少问题,本文对该领域的迁移学习应用情况进行综述,从中总结经验和发现问题,为未来研究提供线索.1)对基于迁移学习的医学图像分类研究的重要文献进行梳理、分析和总结,概括出3种迁移学习策略,即迁移模型的结构调整策略、参数调整策略和从迁移模型中提取特征的策略;2)从各文献研究设计的迁移学习过程中提炼共性,总结为5种迁移学习模式,即深度卷积神经网络(deep convolution neural network,DCNN)模式、混合模式、特征组合分类模式、多分类器融合模式和二次迁移模式.阐述了迁移学习策略和迁移学习模式之间的关系.这些迁移学习策略和模式有助于从更高的抽象层次展现迁移学习应用于医学图像分类领域的情况;3)阐述这些迁移学习策略和模式在医学图像分类中的具体应用,分析这些策略及模式的优点、局限性及适用场景;4)给出迁移学习在医学图像分类应用中存在的问题并展望未来研究方向.

    医学图像图像分类迁移学习迁移学习策略迁移学习模式

    生成对抗式网络及其医学影像应用研究综述

    张颖麟胡衍东田理沙刘江...
    687-703页
    查看更多>>摘要:生成对抗式网络(generative adversarial network,GAN)由负责学习数据分布的生成器和负责鉴别样本真伪的判别器构成,二者在相互对抗过程中互相学习逐渐变强.该网络模型使深度学习方法可以自动学习损失函数,减少了对专家知识的依赖,已经广泛应用于自然图像处理领域,对解决医学影像处理的相关瓶颈问题亦具有巨大应用前景.本文旨在找到生成对抗式网络与医学影像领域面临挑战的结合点,通过分析已有工作对未来研究方向进行展望,为该领域研究提供参考.1)阐述了生成对抗式网络的基本原理,从任务拆分、条件约束以及图像到图像的翻译等角度对其衍生模型进行分析回顾;2)对生成对抗式网络在医学影像领域中的数据增广、模态迁移、图像分割以及去噪等方面的应用进行回顾,分析各方法的优缺点与适用范围;3)对现有图像生成质量评估方法进行小结;4)总结生成对抗式网络在医学影像领域的研究进展,并结合该领域问题特性,指出现有理论应用存在的不足与改进方向.生成对抗式网络提出以来,理论不断完善,在医学影像的处理应用中也取得了长足发展,但仍然存在一些亟待解决的问题,包括3维数据合成、几何结构合理性保持、无标记和未配对数据使用以及多模态数据交叉应用等.

    生成对抗式网络(GAN)医学影像深度学习数据增广模态迁移图像分割图像去噪

    基于深度学习的心脏磁共振影像超分辨率前沿进展

    李书林冯朝路于鲲刘鑫...
    704-721页
    查看更多>>摘要:心脏为人体血液流动提供动力,是人体血液循环系统的重要组成部分.受人口老龄化影响,心脏病诊疗已成为重大公共健康话题.非侵入式活体心脏成像对心脏疾病的检测、诊断与治疗意义重大.然而,受活体心跳影响,成像扫描时间与心脏影像分辨率成为难以调和的矛盾.为缓和这一矛盾,基于快速扫描获得的低分辨率影像重建出心脏高分辨率影像的超分辨率(super-resolution,SR)重建技术成为研究热点.深度学习技术在医学影像处理领域中展现出强大生命力,基于深度学习的SR技术因其强大的学习能力与数据驱动性,在心脏影像SR重建领域中表现出明显优于传统方法的性能.目前领域内前沿成果较多,但缺少对领域现状进行总结、对未来发展进行展望的综述性文献.因此,本文对领域内现状进行梳理总结,挑选出代表性方法,分析方法特性,总结文献中心脏影像数据来源与规模,给出常用的评价指标,以及模型得出的性能评价结论.分析发现,基于深度学习的心脏SR重建技术取得了较大进展,但在运动伪影抑制、模型简化程度与时间性能方面仍有进步空间.此外,现有模型基本完全依靠网络强大的表达能力,鲜有临床先验知识的引入.最后,模型间性能对比相对较少,且领域内缺少代表性的可用于评价不同心脏SR重建模型性能的数据集.基于深度学习的心脏影像SR技术仍有较大发展空间.

    深度学习心脏医学影像超分辨率重建磁共振成像心脏影像数据集卷积神经网络高分辨率影像

    CT图像肺及肺病变区域分割方法综述

    冯龙锋陈英周滔辉胡菲...
    722-749页
    查看更多>>摘要:计算机断层扫描(computed tomography,CT)技术能为新冠肺炎(corona virus disease 2019,COVID-19)和肺癌等肺部疾病的诊断与治疗提供更全面的信息,但是由于肺部疾病的类型多样且复杂,使得对肺CT图像进行高质量的肺病变区域分割成为计算机辅助诊断的重难点问题.为了对肺CT图像的肺及肺病变区域分割方法的现状进行全面研究,本文综述了近年国内外发表的相关文献:对基于区域和活动轮廓的肺CT图像传统分割方法的优缺点进行比较与总结,传统的肺CT图像分割方法因其实现原理简单且分割速度快等优点,早期使用较多,但其存在分割精度不高的缺点,目前仍有不少基于传统方法的改进策略;重点分析了基于卷积神经网络(convolutional neural network,CNN)、全卷积网络(fully convolutional network,FCN)、U-Net和生成对抗网络(generative adversarial network,GAN)的肺CT图像分割网络结构改进模型的研究进展,基于深度学习的分割方法具有分割精度高、迁移学习能力强和鲁棒性高等优点,特别是在辅助诊断COVID-19病例时,基于深度学习方法的性能明显优于基于传统方法的性能;介绍肺及肺病变区域分割的常用数据集和评价指标,在解决如COVID-19数据样本量少等问题时,使用GAN以合成高质量的对抗性图像用以扩充数据集,从而增加训练样本的数量和多样性;讨论了肺CT图像的肺及肺病变区域的高精度分割策略的研究趋势、现有挑战和未来的研究方向.

    计算机断层扫描(CT)医学图像分割肺CT图像分割肺病变区域深度学习新冠肺炎(COVID-19)

    结构图注意力网络的新冠肺炎轻重症诊断

    刘彦北李赫南张长青肖志涛...
    750-761页
    查看更多>>摘要:目的 为辅助医生快速分辨新型冠状病毒肺炎(corona virus disease 2019,COVID-19)轻、重症患者,以便对症下药减轻医疗负担,提出一种基于结构图注意力网络的轻重症诊断算法.方法 基于胸部CT图像提取的特定特征以及肺段间的位置关系构建结构图,以肺部内不同肺段为节点,以提取特征为节点属性.采用图神经网络汇聚相邻节点特征,再利用池化层获取分别代表左肺叶和右肺叶特征的图表示.使用结构注意力机制计算左、右肺叶的感染情况对结果诊断的重要性,并依据重要性融合左、右肺叶图表示以得到最终图表示,最后执行分类任务.由于数据中存在明显的类别不平衡现象,采用Focal-Loss损失函数优化模型以减轻对分类结果的影响.结果 实验将所提算法分别与传统机器学习方法和流行的图神经网络算法做性能对比.在重症诊断的准确率上,本文算法相较于传统机器学习方法和图神经网络算法分别取得14.2%42.0%和3.6%4.8%的提升.在AUC(area under curve)指标上,本文算法相较于上述两种算法分别取得8.9%18.7%和3.1%3.6%的提升.除此之外,通过消融实验发现具有结构注意力机制的算法相较于未使用的算法在SPE(specificity)、SEN(sensitivity)和AUC 3个指标上分别取得了2.4%、1.4%和1.1%的提升;应用Focal-Loss损失函数的算法相较于未使用的算法提升了2.1%、1.1%和0.9%.结论 所提出的诊断模型综合了图神经网络以及结构注意力机制的优点,引入Focal-Loss损失函数,提升了困难样本的分类准确率,使诊断结果更加准确.

    新冠肺炎(COVID-19)诊断图神经网络(GNN)结构注意力机制拓扑结构图图分类

    慢阻肺患者CT图像中肺内血管分割及定量分析

    赵宏李璋张杰华王琨...
    762-773页
    查看更多>>摘要:目的 肺内血管形态结构的改变是慢性阻塞性肺疾病(慢阻肺)的一种重要病理改变.针对慢阻肺中肺血管疾病的定量评估问题,提出一种基于各向异性连续最大流的肺内血管自动分割方法,并定量分析不同半径的肺内血管体积分布,以研究慢阻肺病程中肺血管重塑规律.方法 使用U-Net分割肺体,获取肺脏区域,减少后续血管增强与分割的运算量;借助基于多尺度Hessian矩阵的血管增强方法,获得血管的似然增强结果和轴向方向;将血管似然结果和轴向信息以数据保真项和各向异性正则项的形式融入到连续最大流分割框架,实现肺血管的自动分割.结果 在公开数据集ArteryVein和仿真数据集VascuSynth上对肺内血管分割方法的有效性进行测试;在从4家医院收集的614例临床影像数据上分析小半径血管体积占比情况,对比慢阻肺组与非慢阻肺组之间肺血管重塑差异.肺血管分割方面,对于增加不同程度的高斯噪声(σ=5,10,15,20,25,30,35)的VascuSynth仿真数据,本文方法获得的Dice值分别为0.87,0.80,0.77,0.75,0.73,0.71,0.69;对于低剂量数据集ArteryVein,Dice值为0.79.肺血管定量分析方面,非慢阻肺组和慢阻肺组的小血管体积平均占比值为0.656±0.067,0.589±0.074.不同慢阻肺分级GOLD1—4组小血管占比为0.612±0.051、0.600±0.078、0.565±0.067、0.528±0.053.结论 本文提出的肺内血管算法可以用于肺血管重塑研究,通过实验分析验证了非慢阻肺组与慢阻肺组小血管体积占比存在显著差异;基于慢阻肺分级指数(global initiative for chronic obstructive pulmonary disease,GOLD)的不同慢阻肺病人之间,小血管体积占比在轻症和重症之间也存在显著差异.

    慢性阻塞性肺疾病(COPD)肺血管分割各向异性总变分连续最大流定量分析

    基础信息保持和细节强化的胸部CT图像增强

    张余张顺利白相志张利...
    774-783页
    查看更多>>摘要:目的 清晰的胸部计算机断层扫描(computed tomography,CT)图像有助于医生准确诊断肺部相关疾病,但受成像设备、条件等因素的限制,扫描得到的CT图像质量有时会不尽如人意.因此,本文提出一种简单有效的基于基础信息保持和细节强化的胸部CT图像增强算法.方法 利用多尺度引导滤波器将胸部CT图像分解为一个基础信息层和多个不同尺度的细节层.基于熵的权重将胸部CT图像的多个细节层进行融合,并乘以强化系数进一步增强纹理细节.将强化的细节层和原始的基础信息层重新组合即可生成细节强化的胸部CT图像.通过此种增强方式,本文算法既能显著增强胸部CT图像的纹理细节,又能将大部分原始的基础结构信息保留到增强图像中.结果 为了验证算法的有效性,将本文算法与5种优秀的图像增强算法在由3209幅胸部CT图像组成的数据集上进行测试评估.定性和定量实验结果表明,本文算法得到的增强图像保持了更多原始胸部CT图像中的基础结构信息,并更显著地强化了其中的纹理细节信息.在定量结果中,本文算法的标准差、结构相似性和峰值信噪比指标值均优于对比的5种方法,相比于性能第2的方法分别提高了4.95、0.16和4.47,即分别提升了5.61%、17.00%和16.17%.此外,本文算法增强一幅CT图像仅消耗0.10 s,有潜力应用于实际的临床诊断中.结论 本文算法可以在保留大量原始结构信息的同时有效强化CT图像的细节信息,有助于医生对患者肺部疾病的精确诊断.本文算法具有较好的泛化能力,可以用于增强其他部位的CT图像和其他模态图像并取得优秀的增强结果.

    肺部疾病诊断胸部CT图像增强图像分解基础信息保持细节强化

    面向小样本股骨骨折分型的多视角注意力融合方法

    张亚东汪玲兰海翟禹樵...
    784-796页
    查看更多>>摘要:目的 股骨粗隆间骨折是老年人最常见的骨折,不同类型的骨折需要不同的治疗方法.计算机图像识别技术可以辅助医生提高诊断准确率.传统的图像特征提取和机器学习方法,无法实现细粒度、高精度的分类,且少见针对3维图像的骨折分型方法.基于深度学习方法,通常需要大量的样本参与训练才能得出较好的分型性能.针对上述问题,本文提出一种面向小样本、多分类的骨折分型方法.方法 将原始CT(computed tomography)分层扫描图像进行3维重建,获取不同视角下的2维图像信息,利用添加注意力机制的多视角深度学习网络融合组合特征,并联合旋转网络获得视角不变特征,最终得到预期分型结果.结果 针对自建训练数据集(5类,每类23个样本),实验在4种3维深度学习网络模型上进行比较.基于注意力机制的多视角融合深度学习方法比传统深度学习模型的准确率提高了25%;基于旋转网络的方法比多视角深度学习方法提高8%.通过对比实验表明,提出的多视角融合深度学习方法大大优于传统基于体素的方法,并且也有利于使网络快速收敛.结论 在骨折分型中,本文提出的添加注意力机制的多视角融合分型方法优于传统基于体素的深度学习方法,具有更高的准确率和更好的性能.

    骨折分型3维重建多视角采样多视角融合注意力机制