首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    《中国图象图形学报》低质图像增强专刊简介

    李波朱策操晓春山世光...
    1335-1336页

    水下光学图像重建方法研究进展

    王柯俨黄诗芮李云松
    1337-1358页
    查看更多>>摘要:水下光学图像可以提供直观丰富的海洋信息,近年来在海洋资源开发、环境保护和海洋工程等诸多领域发挥越来越重要的作用.但是受恶劣复杂的水下成像环境影响,水下光学图像普遍存在对比度低、图像模糊以及颜色失真等质量退化问题,严重制约水下智能处理系统的性能和应用.如何清晰地重建水下光学图像是国内外广泛关注的、具有挑战性的难点问题.随着深度学习技术的蓬勃发展,利用深度学习来提升水下图像质量成为当前的研究热点.鉴于目前国内在水下光学图像重建方面的研究综述较少,本文全面综述其研究进展.分析了水下图像退化机理,总结了现有水下成像模型以及水下图像重建的挑战;梳理了水下光学图像重建方法的发展历程,根据是否采用深度学习以及是否基于成像模型,将现有方法分为4大类,并按照研究发展顺序,依次介绍4类方法的基本思想,分析其优缺点;归纳了目前公开的水下图像数据集以及常用的水下图像质量评价方法,并对8种典型的水下图像重建方法进行了性能评测和对比分析;总结了该领域目前仍存在的问题,展望了后续研究方向,以便于相关研究人员了解该领域的研究现状,促进该领域的技术发展.

    水下图像退化深度学习图像增强图像复原水下数据集水下图像质量评价

    单幅图像去雨数据集和深度学习算法的联合评估与展望

    胡明娣吴怡宋尧杨静冰...
    1359-1391页
    查看更多>>摘要:雨天会影响室外图像捕捉的质量,进而引起户外视觉任务性能下降.基于深度学习的单幅图像去雨研究因算法性能优越而引起了大家的关注,并且聚焦点集中在数据集的质量、图像去雨方法、单幅图像去雨后续高层任务的研究和性能评价指标等方面.为了方便研究者快速全面了解该领域,本文从上述4个方面综述了基于深度学习的单幅图像去雨的主流文献.依据数据集的构建方式将雨图数据集分为4类:基于背景雨层简单加和、背景雨层复杂融合、生成对抗网络(generative adversarial network,GAN)数据驱动合成的数据集,以及半自动化采集的真实数据集.依据任务场景、采取的学习机制以及网络设计对主流算法分类总结.综述了面向单任务和联合任务的去雨算法,单任务即雨滴、雨纹、雨雾和暴雨的去除;联合任务即雨滴和雨纹、所有噪声去除.综述了学习机制和网络构建方式(比如:卷积神经网络(convolutional neural network,CNN)结构多分支组合,GAN的生成结构,循环和多阶段结构,多尺度结构,编解码结构,基于注意力,基于Transformer)以及数据模型双驱动的构建方式.综述了单幅图像去雨后续高层任务的研究文献和图像去雨算法性能的评价指标.通过合成数据集和真实数据集上的综合实验对比,证实了领域知识隐式引导网络构建可以有效提升算法性能,领域知识显式引导正则化网络的学习有潜力进一步提升算法的泛化性.最后,指出单幅图像去雨工作目前面临的挑战和未来的研究方向.

    单幅图像去雨深度神经网络雨图数据集雨图合成模型数据双驱动后续高层任务性能评价指标

    低光照图像增强算法综述

    马龙马腾宇刘日升
    1392-1409页
    查看更多>>摘要:低光照图像增强旨在提高光照不足场景下捕获数据的视觉感知质量以获取更多信息,逐渐成为图像处理领域中的研究热点,在自动驾驶、安防等人工智能相关行业中具有十分广阔的应用前景.传统的低光照图像增强技术往往需要高深的数学技巧以及严格的数学推导,且导出的迭代过程普遍流程复杂,不利于实际应用.随着大规模数据集的相继诞生,基于深度学习的低光照图像增强已经成为当前的主流技术,然而此类技术受限于数据分布,存在性能不稳定、应用场景单一等问题.此外,在低光照环境下的高层视觉任务(如目标检测)对于低光照图像增强技术的发展带来了新的机遇与挑战.本文从3个方面系统地综述了低光照图像增强技术的研究现状.介绍了现有低光照图像数据集,详述了低光照图像增强技术的发展脉络,通过对比低光照图像增强质量与夜间人脸检测精度,进一步对现有低光照增强技术进行了全面评估与分析.基于对上述现状的探讨,结合实际应用,本文指出当前技术的局限性,并对其发展趋势进行预测.

    低光照图像增强Retinex理论光照估计深度学习低光照人脸检测

    图像与视频质量评价综述

    程茹秋余烨石岱宗蔡文...
    1410-1429页
    查看更多>>摘要:图像/视频的获取及传输过程中,由于物理环境及算法性能的限制,其质量难免会出现无法预估的衰减,导致其在实际场景中的应用受到限制,并对人的视觉体验造成显著影响.因此,作为计算机视觉领域的一项重要任务,图像/视频质量评价应运而生.其目的在于通过构建计算机数学模型来衡量图像/视频中的失真信息以判断其质量的好坏,达到自动预测质量的效果.在城市生活、交通监控以及多媒体直播等多个场景中具有广泛的应用前景.图像/视频质量评价研究取得了长足的发展,为计算机视觉领域中其他任务提供了一定的便利.本文在广泛调研前人研究的基础上,回顾了整个图像/视频质量评价领域的发展历程,分别列举了传统方法和深度学习方法中一些具有里程碑意义的算法和影响力较大的算法,然后从全参考、半参考和无参考3个方面分别对图像/视频质量评价领域的一些文献进行了综述,具体涉及的方法包含基于结构信息、基于人类视觉系统和基于自然图像统计的方法等;在LIVE(laboratory for image&video engineering)、CSIQ(categorical subjective image quality database)、TID2013等公开数据集的基础上,基于SROCC(Spearman rank order correlation coefficient)、PLCC(Pearson linear cor-relation coefficient)等评价指标,对一些具有代表性算法的性能进行了分析;最后总结当前质量评价领域仍存在的一些挑战与问题,并对其进行了展望.本文旨在为质量评价领域的研究人员提供一个较全面的参考.

    图像/视频质量评价(I/VQA)结构信息人类视觉系统(HVS)自然图像统计(NSS)深度学习

    图像质量评价研究综述——从失真的角度

    鄢杰斌方玉明刘学林
    1430-1466页
    查看更多>>摘要:随着多媒体技术的快速发展及广泛应用,图像质量评价因其在多媒体处理中的重要作用得到越来越多的关注,其作用包括图像数据筛选、算法参数选择与优化等.根据图像质量评价应用时是否需要参考信息,它可分为全参考图像质量评价、半参考图像质量评价和无参考图像质量评价,前两类分别需要全部参考信息和部分参考信息,而第3类不需要参考信息.无论是全参考、半参考还是无参考图像质量评价,图像失真对图像质量评价的影响均较大,主要体现在图像质量评价数据库构建和图像质量评价模型设计两方面.本文从图像失真的角度,主要概述2011—2021年国内外公开发表的图像质量评价模型,涵盖全参考、半参考和无参考模型.根据图像的失真类型,将图像质量评价模型分为针对合成失真的图像质量评价模型、针对真实失真的图像质量评价模型和针对算法相关失真的图像质量评价模型.其中,合成失真是指人工添加噪声,如高斯噪声和模糊失真,通常呈现均匀分布;真实失真是指在图像的获取中,由于环境、拍摄设备或拍摄操作不当等因素所引入的失真类型.相对合成失真,真实失真更为复杂,可能包括一种或多种失真,数据收集难度更大;算法相关失真是指图像处理算法或计算机视觉算法在处理图像时,由于算法本身的缺陷或性能不足等原因而出现在结果图像中的降质,相对合成失真和真实失真,算法相关失真的显著特点是该类型失真呈现非均匀分布.本文介绍现有的图像质量评价数据库,包括图像数据来源和数据库构建细节等;然后重点介绍图像质量评价模型的设计思想.最后总结了介绍的图像质量评价模型,并指出未来可能的发展方向.

    图像质量评价(IQA)图像处理视觉感知计算机视觉机器学习深度学习

    面向真实水下图像增强的质量评价数据集

    顾约瑟姜求平邵枫高伟...
    1467-1480页
    查看更多>>摘要:目的 由于光在水中的衰减/散射以及微生物对光的吸收/反射等影响,水下图像通常存在色偏、模糊、光照不均匀以及对比度过低等诸多质量问题.研究人员对此提出了许多不同的水下图像增强算法.为了探究目前已有的水下图像增强算法的性能和图像质量客观评价方法是否适用于评估水下图像,本文开展大规模主观实验来对比不同水下图像增强算法在真实水下图像数据集上的性能,并对现有图像质量评价方法用于评估水下图像的准确性进行测试.方法 构建了一个真实的水下图像数据集,其中包含100幅原始水下图像以及对应的1000幅由10种主流水下图像增强方法增强后的图像.基于成对比较的策略开展水下图像主观质量评价,进一步对主观评价得到的结果进行分析,包括一致性分析、收敛性分析以及显著性检验.最后将10种现有主流的无参考图像质量评价在本文数据集上进行测试,检验其在真实水下图像数据集上的评价性能.结果 一致性分析中,该数据集包含的主观评分有较高的肯德尔一致性系数,其值为0.41;收敛性分析中,所收集的投票数量与图像数量足够得到稳定的主观评分;表明本文构建的数据集具有良好的有效性与可靠性.此外,目前对比自然图像的无参考图像质量评价方法并不适用于水下图像数据集,验证了水下图像与自然图像的巨大差异.结论 本文构建的真实水下图像数据集为未来水下图像质量客观评价方法以及水下图像增强算法的研究提供了参考与支持.所涉及的图像以及所有收集的用户数据,都在项目主页(https://github.com/yia-yuese/RealUWIQ-dataset)上公开.

    图像质量评价水下图像增强主观质量评价数据集成对比较(PC)

    适合跨域目标检测的雾霾图像增强

    郭强浦世亮张世峰李波...
    1481-1492页
    查看更多>>摘要:目的 室外监控在雾霾天气所采集图像的成像清晰度和目标显著程度均会降低,当在雾霾图像提取与人眼视觉质量相关的自然场景统计特征和与目标检测精度相关的目标类别语义特征时,这些特征与从清晰图像提取的特征存在明显差别.为了提升图像质量并且在缺乏雾霾天气目标检测标注数据的情况下提升跨域目标检测效果,本文综合利用传统方法和深度学习方法,提出了一种无监督先验混合图像特征级增强网络.方法 利用本文提出的传统先验构成雾气先验模块;其后连接一个特征级增强网络模块,将去散射图像视为输入图像,利用像素域和特征域的损失实现场景统计特征和目标类别语义相关表观特征的增强.该混合网络突破了传统像素级增强方法难以表征抽象特征的制约,同时克服了对抗迁移网络难以准确衡量无重合图像域在特征空间分布差异的弱点,也减弱了识别算法对于低能见度天候采集图像标注数据的依赖,可以同时提高雾霾图像整体视觉感知质量以及局部目标可识别表现.结果 实验在两个真实雾霾图像数据集、真实图像任务驱动的测试数据集(real-world task-driven testing set,RTTS)和自动驾驶雾天数据集(foggy driving dense)上与最新的5种散射去除方法进行了比较,相比于各指标中性能第2的算法,本文方法结果中梯度比指标R值平均提高了50.83%,属于感知质量指标的集成自然图像质量评价指标(integrated local natural image quality evaluator,IL-NIQE)值平均提高了6.33%,属于跨域目标检测指标的平均精准率(mean average precision,MAP)值平均提高了6.40%,平均查全率Recall值平均提高了7.79%.实验结果表明,本文方法结果在视觉质量和目标可识别层面都优于对比方法,并且本文方法对于高清视频的处理速度达50帧/s,且无需标注数据,因而在监控系统具有更高的实用价值.结论 本文方法可以同时满足雾霾天候下对采集视频进行人眼观看和使用识别算法进行跨域目标检测的需求,具有较强的应用意义.

    图像去雾特征增强先验混合网络无监督学习图像域转换

    沙尘图像色彩恢复及增强卷积神经网络

    石争浩刘春月任文琦都双丽...
    1493-1508页
    查看更多>>摘要:目的 在沙尘天气条件下,由于大气中悬浮微粒对入射光线的吸收和散射,户外计算机视觉系统所采集图像通常存在颜色偏黄失真和低对比度等问题,严重影响户外计算机视觉系统的性能.为此,提出一种带色彩恢复的沙尘图像卷积神经网络增强方法,由一个色彩恢复子网和一个去尘增强子网组成.方法 采用提出的色彩恢复子网(sand dust color correction,SDCC)校正沙尘图像的偏色,将颜色校正后的图像作为条件,输入到由自适应实例归一化残差块组成的去尘增强子网中,对沙尘图像进行增强处理.本文还提出一种基于物理光学模型的沙尘图像合成方法,并采用该方法构建了大规模的配对沙尘图像数据集.结果 对大量沙尘图像的实验结果表明,所提出的沙尘图像增强方法能很好地去除图像中的偏色和沙尘,获得正常的视觉颜色和细节清晰的图像.进一步的对比实验表明,该方法能取得优于对比方法的增强图像.结论 本文所提出的沙尘图像增强方法能很好地消除整体的黄色色调和尘霾现象,获得正常的视觉色彩和细节清晰的图像.

    沙尘图像沙尘图像增强颜色校正自适应实例归一化残差块合成沙尘图像数据集

    融合3D注意力和Transformer的图像去雨网络

    王美华柯凡晖梁云范衠...
    1509-1521页
    查看更多>>摘要:目的 因为有雨图像中雨线存在方向、密度和大小等各方面的差异,单幅图像去雨依旧是一个充满挑战的研究问题.现有算法在某些复杂图像上仍存在过度去雨或去雨不足等问题,部分复杂图像的边缘高频信息在去雨过程中被抹除,或图像中残留雨成分.针对上述问题,本文提出三维注意力和Transformer去雨网络(three-dimen-sion attention and Transformer deraining network,TDATDN).方法 将三维注意力机制与残差密集块结构相结合,以解决残差密集块通道高维度特征融合问题;使用Transformer计算特征全局关联性;针对去雨过程中图像高频信息被破坏和结构信息被抹除的问题,将多尺度结构相似性损失与常用图像去雨损失函数结合参与去雨网络训练.结果 本文将提出的TDATDN网络在Rain12000雨线数据集上进行实验.其中,峰值信噪比(peak signal to noise ratio,PSNR)达到33.01 dB,结构相似性(structural similarity,SSIM)达到0.9278.实验结果表明,本文算法对比以往基于深度学习的神经网络去雨算法,显著改善了单幅图像去雨效果.结论 本文提出的TDATDN图像去雨网络结合了3D注意力机制、Transformer和编码器—解码器架构的优点,可较好地完成单幅图像去雨工作.

    单幅图像去雨卷积神经网络(CNN)Transformer3D注意力U-Net