首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    融合参考先验与生成先验的老照片修复

    刘继鑫陈瑞安仕鹏
    1657-1668页
    查看更多>>摘要:目的 修复老照片具有重要的实用价值,但老照片包含多种未知复杂的退化,传统的修复方法组合不同的数字图像处理技术进行修复,通常产生不连贯或不自然的修复结果.基于深度学习的修复方法虽然被提出,但大多集中于对单一或有限的退化进行修复.针对上述问题,本文提出一种融合参考先验与生成先验的生成对抗网络来修复老照片.方法 对提取的老照片和参考图像的浅层特征进行编码获得深层语义特征与潜在编码,对获得的潜在编码进一步融合获得深度语义编码,深度语义编码通过生成先验网络获得生成先验特征,并且深度语义编码引导条件空间多特征变换条件注意力块进行参考语义特征、生成先验特征与待修复特征的空间融合变换,最后通过解码网络重建修复图像.结果 实验与6种图像修复方法进行了定量与定性评估.比较了4种评估指标,本文算法的所有指标评估结果均优于其他算法,PSNR(peak signal-to-noise ratio)为23.69 dB,SSIM(structural similarity index)为0.8283,FID(Fréchet inception distance)为71.53,LPIPS(learned perceptual image patch similarity)为0.309),相比指标排名第2的算法,分别提高了0.75 dB,0.0197,13.69%,19.86%.定性结果中,本文算法具有更好的复杂退化修复能力,修复的细节更加丰富.此外,本文算法相比对比算法更加轻量,推断速度更快,以43.44 M的参数量完成256×256像素分辨率图像推断仅需248 ms.结论 本文提出了融合参考先验与生成先验的老照片修复方法,充分利用了参考先验的语义信息与生成模型封装的人像先验,在主观与客观上均取得了先进的修复性能.

    深度学习生成对抗网络(GAN)老照片修复参考先验生成先验空间特征变换编解码网络多尺度感知

    区域注意力机制引导的双路虹膜补全

    张志礼张慧王甲夏玉峰...
    1669-1681页
    查看更多>>摘要:目的 虹膜识别是一种稳定可靠的生物识别技术,但虹膜图像的采集过程会受到多种干扰造成图像中虹膜被遮挡,比如光斑遮挡、上下眼皮遮挡等.这些遮挡的存在,一方面会导致虹膜信息缺失,直接影响虹膜识别的准确性,另一方面会影响预处理(如定位、分割)的准确性,间接影响虹膜识别的准确性.为解决上述问题,本文提出区域注意力机制引导的双路虹膜补全网络,通过遮挡区域的像素补齐,可以显著减少被遮挡区域对虹膜图像预处理和识别的影响,进而提升识别性能.方法 使用基于Transformer的编码器和基于卷积神经网络(convolutional neural network,CNN)的编码器提取虹膜特征,通过融合模块将两种不同编码器提取的特征进行交互结合,并利用区域注意力机制分别处理低层和高层特征,最后利用解码器对处理后的特征进行上采样,恢复遮挡区域,生成完整图像.结果 在CASIA(Institute of Automation,Chinese Academy of Sciences)虹膜数据集上对本文方法进行测试.在虹膜识别性能方面,本文方法在固定遮挡大小为64×64像素的情况下,遮挡补全结果的TAR(true accept rate)(0.1%FAR(false accept rate))为63%,而带有遮挡的图像仅为19.2%,提高了43.8%.结论 本文所提出的区域注意力机制引导的双路虹膜补全网络,有效结合Transformer的全局建模能力和CNN的局部建模能力,并使用针对遮挡的区域注意力机制,实现了虹膜遮挡区域补全,进一步提高了虹膜识别的性能.

    虹膜补全虹膜识别虹膜分割Transformer卷积神经网络(CNN)注意力

    融合注意力机制的模糊图像多尺度复原

    陈紫柠张宏怡曾念寅李寒...
    1682-1696页
    查看更多>>摘要:目的 去模糊任务通常难以进行对图像纹理细节的学习,所复原图像的细节信息不丰富,图像边缘不够清晰,并且需要耗费大量时间.本文通过对图像去模糊方法进行分析,同时结合深度学习和对抗学习的方法,提出一种新型的基于生成对抗网络(generative adversarial network,GAN)的模糊图像多尺度复原方法.方法 使用多尺度级联网络结构,采用由粗到细的策略对模糊图像进行复原,增强去模糊图像的纹理细节;同时采用改进的残差卷积结构,在不增加计算量的同时,加入并行空洞卷积模块,增加了感受野,获得更大范围的特征信息;并且加入通道注意力模块,通过对通道之间的相关性进行建模,加强有效特征权重,并抑制无效特征;在损失函数方面,结合感知损失(perceptual loss)以及最小均方差(mean squared error,MSE)损失,保证生成图像和清晰图像内容一致性.结果 通过全参考图像质量评价指标峰值信噪比(peak signal to noise ratio,PSNR)、结构相似性(structural similarity,SSIM)以及复原时间来评价算法优劣.与其他方法的对比结果表明,本文方法生成的去模糊图像PSNR指标提升至少3.8%,复原图像的边缘也更加清晰.将去模糊后的图像应用于YOLO-v4(you only look once)目标检测网络,发现去模糊后的图像可以检测到更小的物体,识别物体的数量有所增加,所识别物体的置信度也有一定的提升.结论 采用由粗到细的策略对模糊图像进行复原,在残差网络中注入通道注意力模块以及并行空洞卷积模块改进网络的性能,并进一步简化网络结构,有效提升了复原速度.同时,复原图像有着更清晰的边缘和更丰富的细节信息.

    注意力机制图像修复深度学习生成对抗网络(GAN)多尺度