首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    高光谱图像变化检测技术研究进展

    丁晨陈静怡郑萌萌张磊...
    1714-1729页
    查看更多>>摘要:相对于自然图像和多光谱图像,高光谱图像包含丰富的空间—光谱信息,不仅能够保留目标的空间信息,还能够获取高度可辨别的光谱信息。因此,如变化检测、目标追踪等高光谱图像处理技术在对地观测任务中得到了广泛应用。然而,在高光谱图像变化检测的过程中仍然存在许多问题与挑战。如高光谱图像的高维复杂性、光谱差异性以及存在光谱混合等问题,影响变化检测效果。得益于深度学习理论的深入研究,高光谱图像变化检测技术研究得到了极大的发展。本文对现有基于深度学习的变化检测方法进行全面分析总结,按照高光谱图像采集条件是否相同,将其分为同构高光谱图像变化检测以及异构高光谱图像变化检测。其中,从特征提取的网络结构优化和特征提取前混合像素处理两个角度,又将同构高光谱图像变化检测方法进一步分为基于时序依赖和空谱信息提取的方法以及基于端元提取和解混的方法,分别总结各类方法的特点和局限性,并讨论未来的研究重点。此外,面对不同传感器获取的异构高光谱图像数据,现有的方法基于图论学习图像的结构关系,并基于图像变换将其转换至公共域从而进行变化检测处理。本文从高光谱图像变化检测领域的新设计、新方法和应用场景出发,通过综合国内外前沿文献来梳理该领域的主要发展,重点论述高光谱图像变化检测领域的发展现状、前沿动态、热点问题及趋势。

    高光谱图像变化检测时序特征提取端元解混异构高光谱图像变化检测

    跨域遥感场景解译研究进展

    郑向涛肖欣林陈秀妹卢宛萱...
    1730-1746页
    查看更多>>摘要:遥感对地观测中普遍存在多平台、多传感器和多角度的多源数据,为遥感场景解译提供协同互补信息。然而,现有的场景解译方法需要根据不同遥感场景数据训练模型,或者对测试数据标准化以适应现有模型,训练成本高、响应周期长,已无法适应多源数据协同解译的新阶段。跨域遥感场景解译将已训练的老模型迁移到新的应用场景,通过模型复用以适应不同场景变化,利用已有领域的知识来解决未知领域问题。本文以跨域遥感场景解译为主线,综合分析国内外文献,结合场景识别和目标识别两个典型任务,论述国内外研究现状、前沿热点和未来趋势,梳理总结跨域遥感场景解译的常用数据集和统一的实验设置。本文实验数据集及检测结果的公开链接为:https://github。com/XiangtaoZheng/CDRSSI。

    跨域遥感场景解译分布外泛化模型泛化多样性数据集迁移学习自适应算法

    "三维视觉—语言"推理技术的前沿研究与最新趋势

    雷印杰徐凯郭裕兰杨鑫...
    1747-1764页
    查看更多>>摘要:三维视觉推理的核心思想是对点云场景中的视觉主体间的关系进行理解。非专业用户难以向计算机传达自己的意图,从而限制了该技术的普及与推广。为此,研究人员以自然语言作为语义背景和查询条件反映用户意图,进而与点云的信息进行交互以完成相应的任务。此种范式称做"三维视觉—语言"推理,在自动驾驶、机器人导航以及人机交互等众多领域广泛应用,已经成为计算机视觉领域中备受瞩目的研究方向。过去几年间,"三维视觉—语言"推理技术迅猛发展,呈现出百花齐放的趋势,但是目前依然缺乏对最新研究进展的全面总结。本文聚焦于两类最具代表性的研究工作,锚框预测和内容生成类的"三维视觉—语言"推理技术,系统性概括领域内研究的最新进展。首先,本文总结了"三维视觉—语言"推理的问题定义和现存挑战,同时概述了一些常见的骨干网络。其次,本文按照方法所关注的下游场景,对两类"三维视觉—语言"推理技术做了进一步细分,并深入探讨了各方法的优缺点。接下来,本文对比分析了各类方法在不同基准数据集上的性能。最后,本文展望了"三维视觉—语言"推理技术的未来发展前景,以期促进该领域的深入研究与广泛应用。

    深度学习计算机视觉"三维视觉—语言"推理跨模态学习视觉定位密集字幕生成视觉问答场景生成

    融合点云与图像的环境目标检测研究进展

    贾明达杨金明孟维亮郭建伟...
    1765-1784页
    查看更多>>摘要:在数字仿真技术应用领域,特别是在自动驾驶技术的发展中,目标检测是至关重要的一个环节,它涉及对周围环境中物体的感知,为智能装备的决策和规划提供了关键信息。近年来,随着传感器技术的进步,图像和点云成为两种主要的感知数据源,它们各自在基于深度学习技术的目标检测方法研究中具有独特的优势。为了更加全面地对现有基于点云和图像的目标检测方法进行研究,本文对基于图像、点云及两者联合的3类目标检测算法进行系统的梳理和总结,旨在探索如何将这两种数据源融合起来,促进提高目标检测的准确性、稳定性和鲁棒性,并对融合点云和图像的环境目标检测发展方向进行展望。

    点云自动驾驶多模态目标检测融合

    序言

    王耀南
    前插1-前插2页