首页期刊导航|中国图象图形学报
期刊信息/Journal information
中国图象图形学报
中国图象图形学报

李小文

月刊

1006-8961

jig@irsa.ac.cn

010-64807995 8261442

100101

北京9718信箱

中国图象图形学报/Journal Journal of Image and GraphicsCSCD北大核心CSTPCD
查看更多>>本刊是集计算机图象图形高科技理论与应用研究成果、成果产品化与商情动态于一体的综合性学术期刊。是核心期刊、权威性杂志。作为中国图象图形学学会的会刊,利用学会在国内外广泛的科技信息渠道、全方位多层面的学科交叉应用,积极向产业界宣传科技成果,热心向科技界推荐最新产品。
正式出版
收录年代

    高光谱图像深度模糊核聚类的洋底锰结核识别

    张启忠郑恩迪王叶剑高发荣...
    1886-1895页
    查看更多>>摘要:目的 海洋资源调查是海洋科学研究的重要组成部分,对于开发利用海洋资源、保护海洋环境有重要意义.将深海高光谱图像用于调查洋底锰结核资源,相比传统图像方法信息更为全面,识别更为准确.但是高光谱方法中用于有监督分类识别的分类器需要人工标定的标签,这在深海环境中是较为困难的.针对这一局限性,本文提出了一种融合深度网络与模糊核聚类的深度模糊核聚类(deep kernel fuzzy C-means,DKFCM)算法,实现对洋底锰结核高光谱图像的无监督聚类.方法 DKFCM由随机深度卷积网络(Rdnet)及改进的模糊核聚类算法两大模块组成.Rdnet通过降维、随机图块卷积及非线性激活操作的循环,实现对高光谱图像浅层及深层特征的提取,融合这两类特征作为后续聚类识别的输入.改进的模糊核聚类算法先用欧氏距离计算初始聚类中心,再用模糊核聚类的方法以实现海洋资源的准确分类.结果 实验结果表明,DKFCM无监督聚类能有效聚类洋底资源,对锰结核的聚类准确率达到76.59%,相比单用K-means聚类提高了20.99%,相比经Rdnet提取特征后再用K-means聚类提高了13.76%,对比实验表明DKFCM算法在无标签数据的情况下也能达到良好的准确率.结论 本文所提的高光谱深度模糊核聚类方法,实现了深海锰结核的无监督聚类,可以用于海洋资源量的评估.

    高光谱图像深度学习卷积网络特征提取聚类锰结核

    波段自适应细节注入的高分五号与Sentinel-2遥感影像空谱融合

    王海荣郭擎李安
    1896-1909页
    查看更多>>摘要:目的 针对当前空谱融合方法应用到高光谱图像融合时,出现的空间细节信息提升明显但光谱失真,或者光谱保真度高但空间细节信息提升不足的问题,本文提出一种波段自适应细节注入的高分五号(GF-5)高光谱图像(30 m)与Sentinel-2多光谱图像(10 m)的遥感影像空谱融合方法.方法 首先,为了解决两个多波段图像不便于直接融合的问题,提出一种波段自适应的融合策略,对多光谱图像波谱范围以外的高光谱图像波段,以相关系数为标准将待融合图像进行分组.其次,针对传统Gram-Schmidt(GS)融合方法用平均权重系数模拟低分辨率图像造成的光谱失真问题,使用最小均方误差估计计算线性拟合系数,再将拟合图像作为第1分量进行GS正变换,提升融合图像的光谱保真度.最后,为了能同时注入更多的空间细节信息,通过非下采样轮廓波变换将拟合图像、空间细节信息图像和多光谱图像的空间、光谱信息融入到重构的高空间分辨率图像中,再将其与其他GS分量一起进行逆变换,最终得到10 m分辨率的GF-5融合图像.结果 通过与当前用于高光谱图像空谱融合的典型方法比较,本文方法对于受时相影响较小的城镇区域,在提升空间分辨率的同时有较好的光谱保真度,且不会出现噪点;对于受时相变化影响大的植被密集区域,本文方法融合图像有较好的清晰度和地物细节信息,且没有噪点出现.本文方法的CC(correlation coefficient)、ERGAS(erreur relative globale adimensionnelle de synthèse)和SAM(spectral angle mapper)相比于传统GS方法分别提升8%、26%和28%,表明本文方法的光谱保真度大大提高.结论 本文方法的结果空间上没有噪点且光谱曲线与原始光谱曲线基本保持一致,是一种兼具高空间分辨率和高光谱保真度的高光谱图像融合方法.

    遥感空谱融合高分五号(GF-5)Sentinel-2Gram-Schmidt(GS)变换非下采样轮廓波变换(NSCT)高光谱图像多传感器

    基于频率加权张量核范数的高光谱图像复原

    刘盛曾海金孔文凤张鹏丹...
    1910-1925页
    查看更多>>摘要:目的 高光谱图像复原是高光谱领域中一个重要的预处理步骤,能够有效去除成像条件所带来的不利影响,提升后续处理任务的精度.张量核范数被广泛应用于高光谱复原问题中,得到了较好的结果.然而,在张量核范数的定义中,它对张量所有奇异值使用相同的阈值进行收缩,未充分考虑高光谱的物理意义,得到了次优的结果.为了提升高光谱图像复原的精度,本文提出了基于频率加权张量核范数的高光谱复原算法.方法 在张量的频率域内,对清晰的高光谱图像添加噪声,图像信息在低频部分变化较小,而在高频部分变化巨大.基于这样的物理意义,定义了一种频率加权张量核范数来逼近张量秩函数,提出了频率域权重的自适应确定方法,让其能减少对低频部分的收缩,同时加大高频部分惩罚.然后将其应用于高光谱图像复原和去噪问题中,并基于交替方向乘子法设计了相应最小化问题的快速求解算法.结果 在4个高光谱数据集上与相关方法进行对比仿真实验,高采样率条件下在Washington DC Mall数据集上,相比性能第2的模型,本文模型复原结果的PSNR(peak signal-to-noise ratio)提升了1.76 dB;在Stuff数据集上,PSNR值提升了2.91 dB.高噪声条件下,在Pavia数据集上相比性能第2的模型,本文模型去噪结果的PSNR提升了8.61 dB;在Indian数据集上,PSNR值提升了10.77 dB.结论 本文模型可以更好地探索高光谱图像的低秩特性,使复原的图像在保持主体信息的同时,复原出更多图像纹理细节.

    高光谱图像复原低秩张量核范数频率域加权

    面向高光谱图像分类的内容引导卷积深度网络并行实现

    刘启超肖亮杨劲翔
    1926-1939页
    查看更多>>摘要:目的 受限于卷积核形状固定,传统卷积神经网络(convolutional neural network,CNN)方法难以精确分类高光谱图像(hyperspectral image,HSI)中的跨类别边缘区域,导致地物边界模糊.内容引导CNN(content-guided CNN,CGCNN)能够根据地物形态自适应调整卷积核形状,具有地物边缘保持分类能力.但由于内容引导卷积属于非固定模板结构,不能直接调用现有深度学习加速库实现并行计算.针对该问题,本文设计了一种内容引导卷积的并行计算方法,并验证其加速及分类性能.方法 本文基于内容引导卷积等价于各向异性核加权和标准卷积的组合结构,通过利用深度学习库中的平铺、堆叠、网格和采样等底层函数构造索引矩阵来定义重采样方式,以将内容引导卷积分解为与空间位置无关的像素级独立计算过程,并在图形处理器(graphics processing unit,GPU)上并行执行.结果 经测试,本文提出的并行化内容引导卷积相比串行运算方式平均提速近700倍.在分类性能测试中,并行化CGCNN在合成数据集上表现出优异的细节保持分类能力,总精度平均高于对比方法7.10%;同时在两组真实数据集上亦取得最优分类结果,分别高于对比方法7.21%、2.70%.结论 通过将内容引导卷积分步拆解,能够将其转化为一系列并行计算过程,且能够在GPU上高效执行;并通过在多组数据集上的分类精度、参数敏感度和小样本学习等综合性能测试进一步表明,并行化CGCNN在具有优良分类性能的同时,亦具有对不同地物的边缘保持分类能力,能够获得更精细的分类结果.

    内容引导卷积深度学习高光谱图像(HSI)分类并行加速边缘保持分类

    增强类可分性的高光谱图像分类

    方帅张坤张晶曹洋...
    1940-1951页
    查看更多>>摘要:目的 在高光谱图像分类中,由于成像空间分辨率较低,混合像元大量存在.混合像元使得不同类别的光谱特征发生改变,失去原有的独特性,类内差异变大,类间差异变小.针对这一问题,本文提出基于分组滚动引导滤波的策略.同时针对高光谱图像中存在的"维数灾难"问题,提出了弹性网逻辑回归分类器的框架.方法 通过线性判别分析(linear discriminant analysis,LDA)算法生成具有判别性的引导图,对高光谱图像的每个波段执行滚动引导,从而让光谱曲线呈现类内凝聚、类间距离增大的趋势.通过构造逻辑回归目标函数的L1&L2范数正则项约束进行嵌入式波段选择,为每个类别选择出各自可分性强的波段,同时可以使高度相关性的波段保留下来作为分类依据.最后使用邻域优化策略对分类后结果进一步优化,提升分类精度.结果 分别在3个实验数据集上与其他分类算法进行对比,实验结果表明,本文算法的分类结果取得明显提升.本文算法的总体分类精度(overall accuracy,OA)在Indian Pines、Salinas和KSC(Kennedy Space Center)数据集上分别为96.61%、98.66%和99.04%,比其他算法平均分别高出4.8%、3%和1%,同时也在Indina Pines数据集中进行了对比实验以验证增强混合像元光谱可分性和波段可分性算法的有效性,对比实验结果表明本文算法改善了分类效果.结论 分别在光谱特性和波段选择两个环节增强类可分性,分类精度取得明显提升;同时,本文算法适合不同的数据集,并且在不同数量的训练样本下OA均表现较优,算法具有一定的鲁棒性.

    遥感高光谱图像分类增强类可分性分组滚动引导滤波弹性网逻辑回归

    高光谱图像分类的自适应决策融合方法

    叶珍董睿陈浩鑫白璘...
    1952-1968页
    查看更多>>摘要:目的 目前高光谱图像决策融合方法主要采用以多数票决(majority vote,MV)为代表的硬决策融合和以对数意见池(logarithmic opinion pool,LOGP)为代表的软决策融合策略.由于这些方法均使用统一的权重系数进行决策融合,没有对子分类器各自的分类性能进行评估而优化分配权重系数,势必会影响最终的分类精度.针对该问题,本文对多数票决和对数意见池融合策略进行了改进,提出了面向高光谱图像分类的自适应决策融合方法.方法 根据相关系数矩阵对高光谱图像进行波段分组,对每组波段进行空谱联合特征提取;利用高斯混合模型(Gaussian mixture model,GMM)或支持向量机(support vector machine,SVM)分类器对各组空谱联合特征进行分类;最后,采用本文研究的两种基于权重系数优化分配的自适应融合策略对子分类器的分类结果进行决策融合,使得分类精度低的波段组和异常值对最终分类结果的影响达到最小.结果 对两个公开的高光谱数据集分别采用多种特征和两种分类器组合进行实验验证.实验结果表明,在相同特征和分类器条件下,本文提出的自适应多数票决策融合策略(adjust majority vote,adjustMV)、自适应对数意见池决策融合策略(adjust logarithmic opinion pool,adjustLOGP)比传统的MV决策融合策略、LOGP决策融合策略对两个数据集的分类精度均有大幅度提高.Indian Pines数据集上,adjustMV算法的分类精度比相应的MV算法平均提高了1.2%,adjustLOGP算法的分类精度比相应的LOGP算法平均提高了7.38%;Pavia University数据集上,adjustMV算法的分类精度比相应的MV算法平均提高了2.1%,adjustLOGP算法的分类精度比相应的LOGP算法平均提高了4.5%.结论 本文提出的自适应权重决策融合策略为性能较优的子分类器(即对应于分类精度高的波段组)赋予较大的权重,降低了性能较差的子分类器与噪声波段对决策融合结果的影响,从而大幅度提高分类精度.所研究的决策融合策略的复杂度和计算成本均较低,在噪声环境中具有更强的鲁棒性,同时在一定程度上解决了高光谱图像分类应用中普遍存在的小样本问题.

    高光谱图像分类空谱特征提取决策融合多数票决自适应权重

    跨数据集评估的高光谱图像分类

    潘尔婷马泳黄珺樊凡...
    1969-1977页
    查看更多>>摘要:目的 随着高光谱成像技术的飞速发展,高光谱数据的应用越来越广泛,各场景高光谱图像的应用对高精度详细标注的需求也越来越旺盛.现有高光谱分类模型的发展大多集中于有监督学习,大多数方法都在单个高光谱数据立方中进行训练和评估.由于不同高光谱数据采集场景不同且地物类别不一致,已训练好的模型并不能直接迁移至新的数据集得到可靠标注,这也限制了高光谱图像分类模型的进一步发展.本文提出跨数据集对高光谱分类模型进行训练和评估的模式.方法 受零样本学习的启发,本文引入高光谱类别标签的语义信息,拟通过将不同数据集的原始数据及标签信息分别映射至同一特征空间以建立已知类别和未知类别的关联,再通过将训练数据集的两部分特征映射至统一的嵌入空间学习高光谱图像视觉特征和类别标签语义特征的对应关系,即可将该对应关系应用于测试数据集进行标签推理.结果 实验在一对同传感器采集的数据集上完成,比较分析了语义—视觉特征映射和视觉—语义特征映射方向,对比了5种基于零样本学习的特征映射方法,在高光谱图像分类任务中实现了对分类模型在不同数据集上的训练和评估.结论 实验结果表明,本文提出的基于零样本学习的高光谱分类模型可以实现跨数据集对分类模型进行训练和评估,在高光谱图像分类任务中具有一定的发展潜力.

    高光谱图像分类深度学习特征提取零样本学习高光谱语义特征

    多尺度超像素分割和奇异谱分析的高光谱影像分类

    付航孙根云赵云华潘兆杰...
    1978-1993页
    查看更多>>摘要:目的 高光谱影像(hyperspectral image,HSI)中"同物异谱,异物同谱"的现象普遍存在,使分类结果存在严重的椒盐噪声问题.HSI中的空间地物结构复杂多样,单一尺度的空间特征提取方法无法有效地表达地物类间差异和区分地物边界.有效解决光谱混淆和空间尺度问题是提高分类精度的关键.方法 结合多尺度超像素和奇异谱分析,提出一种新的高光谱影像分类方法,从而充分挖掘地物的局部空间特征和光谱特征,解决空间尺度和光谱混淆的问题,提高分类精度.利用多尺度超像素对影像进行分割,获取不同尺度的分割影像,同时在分割区域内进行均值滤波,减少类内的光谱差异,增强类间的光谱差异;对每个区域计算平均光谱向量,并利用奇异谱分析方法获取光谱的主要鉴别特征,同时消除噪声的影响;利用支持向量机对不同尺度超像素分割影像进行分类,并进行决策融合,得到最终的分类结果.结果 实验选取了两个标准高光谱数据集和一个真实数据集,结果表明,利用本文算法提取的光谱—空间特征进行分类,比直接在原始数据上进行分类分别提高约26.8%、9.2%和13%的精度;与先进的深度学习SSRN(spectral-spatial residual network)算法相比,本文算法在精度上分别提升约5.2%、0.7%和4%,并且运行时间仅为前者的18.3%、45.4%和62.1%,处理效率更高.此外,在训练样本有限的情况下,两个标准数据集的样本分别为1%和0.2%时,本文算法均能取得87%以上的分类精度.结论 针对高光谱影像分类中的难题,提出一种新的融合光谱和多尺度空间特征的HSI分类方法.实验结果表明,本文方法优于对比方法,可以产生更精细的分类结果.

    高光谱影像分类超像素奇异谱分析(SSA)决策融合支持向量机(SVM)

    结合倒置特征金字塔和U-Net的高光谱图像分类

    程嵩阳熊玉洁姚瑶李庆利...
    1994-2008页
    查看更多>>摘要:目的 地物分类是对地观测研究领域的重要任务.高光谱图像具有丰富的地物光谱信息,可用于提升遥感图像地物分类的准确度.如何对高光谱图像进行有效的特征提取与表示是高光谱图像分类应用的关键问题.为此,本文提出了一种结合倒置特征金字塔和U-Net的高光谱图像分类方法.方法 对高光谱数据进行主成分分析(principal component analysis,PCA)降维,获取作为网络输入的重构图像数据,然后使用U-Net逐层提取高光谱重构图像的空间特征.与此同时,利用倒置的特征金字塔网络抽取相应层级的语义特征;通过特征融合,得到既有丰富的空间信息又有较强烈的语义响应的特征表示.提出的网络利用注意力机制在跳跃连接过程中实现对背景区域的特征响应抑制,最终实现了较高的地物分类精度.结果 分析了PCA降维方法和输入数据尺寸对分类性能的影响,并在Indian Pines、Pavia University、Salinas和Urban数据集上进行了对比实验.本文方法在4个数据集上分别取得了98.91%、99.85%、99.99%和87.43%的总体分类精度,与支持向量机(support vector machine,SVM)等相关算法相比,分类精度高出1%~15%.结论 本文提出一种结合倒置特征金字塔和U-Net的高光谱图像分类方法,可以应用于有限训练样本下的高光谱图像分类任务,并在多个数据集上取得了较高的分类精度.实验结果表明倒置特征金字塔结构与U-Net结合的算法能够高效地实现高光谱图像的特征提取与表示,从而获得更精细的分类结果.

    高光谱图像分类稀少样本倒置特征金字塔网络(IFPN)U-Net特征融合

    高光谱图像小样本分类的卷积神经网络方法

    吴鸿昊王立国石瑶
    2009-2020页
    查看更多>>摘要:目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征.针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征.方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用.将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类.结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性.结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度.

    高光谱图像有监督分类空谱结合卷积神经网络(CNN)深度学习数据扩充