首页期刊导航|浙江大学学报(英文版)(A辑:应用物理和工程)
期刊信息/Journal information
浙江大学学报(英文版)(A辑:应用物理和工程)
浙江大学学报(英文版)(A辑:应用物理和工程)

杨卫

月刊

1673-565X

jzus_zzy@zju.edu.cn

0571-87952783;87952331

310027

杭州浙大路38号浙大学报英文版编辑部

浙江大学学报(英文版)(A辑:应用物理和工程)/Journal Journal of Zhejiang University Science A:Applied Physics & EngineeringCSCDCSTPCD北大核心EISCI
查看更多>>JZUS-A:《浙大学报(英文版)(A辑:应用物理和工程)》Journal of Zhejiang University SCIENCE A focuses on Applied Physics & Mathematics, Civil Engineering, Environmental, Energy, Materials, Chemical Engineering, Mechanical, EEE, Computer & Information Sciences. JZUS-A has been indexed & abstracted by Science Citation Index-Expanded (SCI-E), Ei Compendex, CA, SA, AJ, ZM, CSA (AHTD/ AI/ AP/ ASF/ CDCD/ CE/ CI/ CIS/ Corr/ C-WC/ EC/ EMA/ MBF/ ESPM/ MD/ MG/ OA/ OT/ SS/ WR). JZUS-A welcomes the high-quality research articles, reviews, science letters, report, news & views etc from all over the world, and also welcomes your online submission at or by to get more information about JZUS-A, thanks.
正式出版
收录年代

    Stress relaxation properties of calcium silicate hydrate:a molecular dynamics study

    Zhicheng GENGShengwen TANGYang WANGHubao A...
    97-115页
    查看更多>>摘要:The time-dependent viscoelastic response of cement-based materials to applied deformation is far from fully understood at the atomic level.Calcium silicate hydrate(C-S-H),the main hydration product of Portland cement,is responsible for the viscoelastic mechanism of cement-based materials.In this study,a molecular model of C-S-H was developed to explain the stress relaxation characteristics of C-S-H at different initial deformation states,Ca/Si ratios,temperatures,and water contents,which cannot be accessed experimentally.The stress relaxation of C-S-H occurs regardless of whether it is subjected to initial shear,tensile,or compressive deformation,and shows a heterogeneous characteristic.Water plays a crucial role in the stress relaxation process.A large Ca/Si ratio and high temperature reduce the cohesion between the calcium-silicate layer and the interlayer region,and the viscosity of the interlayer region,thereby accelerating the stress relaxation of C-S-H.The effect of the hydrogen bond network and the morphology of C-S-H on the evolution of the stress relaxation characteristics of C-S-H at different water contents was elucidated by nonaffine mean squared displacement.Our results shed light on the stress relaxation characteristics of C-S-H from a microscopic perspective,bridging the gap between the microscopic phenomena and the underlying atomic-level mechanisms.

    Effect of coral sand on the mechanical properties and hydration mechanism of magnesium potassium phosphate cement mortar

    Hao LIUHuamei YANGHouzhen WEIJining YU...
    116-129,中插1-中插3页
    查看更多>>摘要:Damaged structures on coral islands have been spalling and cracking due to the dual corrosion of tides and waves.To ensure easy access to aggregate materials,magnesium potassium phosphate cement(MKPC)and coral sand(CS)are mixed to repair damaged structures on coral islands.However,CS is significantly different from land-sourced sand in mineral composition,particle morphology,and strength.This has a substantial impact on the hydration characteristics and macroscopic properties of MKPC mortar.Therefore,in this study we investigated the compressive strength,interfacial mechanical properties,and corrosion resistance of MKPC CS mortar.Changes in the morphology,microstructure,and relative contents of hydration products were revealed by scanning electron microscope-energy dispersive spectrometer(SEM-EDS)and X-ray diffraction(XRD).The results indicated that the compressive strength increased linearly with the interfacial micro-hardness,and then stabilized after long-term immersion in pure water and Na2SO4 solution,showing excellent corrosion resistance.Compared with MKPC river sand(RS)mortar,the hydration products of CS mortar were an intermediate product 6KPO2·8H2O with a relative content of 3.9%at 1 h and 4.1%at 12 h.The hydration product MgKPO4·6H2O increased rapidly after 7-d curing,with an increased growth rate of 1100%.Our results showed that CS promoted the nucleation and formation of hydration products of MKPC,resulting in better crystallinity,tighter overlapping,and a denser interfacial transition zone.The results of this study provide technical support for applying MKPC mortar as a rapid repair material for damaged structures on coral islands.

    Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground

    Juanjuan RENJunhong DUKaiyao ZHANGBin YAN...
    130-146,中插4-中插8页
    查看更多>>摘要:Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track-subgrade frost heave and develop a dynamic model of vehicle-track-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(iii)The maximum wheel-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.

    Influence of ground effect on flow field structure and aerodynamic noise of high-speed trains

    Xiaoming TANLinli GONGXiaohong ZHANGZhigang YANG...
    147-160,中插9-中插12页
    查看更多>>摘要:The simulation of the ground effect has always been a technical difficulty in wind tunnel tests of high-speed trains.In this paper,large eddy simulation and the curl acoustic integral equation were used to simulate the flow-acoustic field results of high-speed trains under four ground simulation systems(GSSs):"moving ground+rotating wheel","stationary ground+rotating wheel","moving ground+stationary wheel",and"stationary ground+stationary wheel".By comparing the fluid-acoustic field results of the four GSSs,the influence laws of different GSSs on the flow field structure,aero-acoustic source,and far-field radiation noise characteristics were investigated,providing guidance for the acoustic wind tunnel testing of high-speed trains.The calculation results of the aerodynamic noise of a 350 km/h high-speed train show that the moving ground and rotating wheel affect mainly the aero-acoustic performance under the train bottom.The influence of the rotating wheel on the equivalent sound source power of the whole vehicle was not more than 5%,but that of the moving ground slip was more than 15%.The average influence of the rotating wheel on the sound pressure level radiated by the whole vehicle was 0.3 dBA,while that of the moving ground was 1.8 dBA.

    Constitutive modelling of concrete material subjected to low-velocity projectile impact:insights into damage mechanism and target resistance

    Shen LIUXieping HUANGXiangzhen KONGQin FANG...
    161-182页
    查看更多>>摘要:This paper presents a numerical study to improve the understanding of the complex subject of penetration and perforation of concrete targets impacted by low-velocity projectiles.The main focus is on the damage mechanisms and the major factors that account for the target resistance of the concrete.An improved continuous surface cap model recently proposed was employed.The model was first equipped with element erosion criteria and was adequately validated by comparisons with ballistic experiments.Comprehensive numerical simulations were carried out where the individual influence of tensile,shear,and volumetric behaviors(pore collapse)of a concrete target on its ballistic performance was investigated.Results demonstrated that cratering on the front face and scabbing on the rear face of the concrete target were mainly dominated by its tensile behavior.The major target resistance came from the second tunneling stage which was primarily governed by the shear and volumetric behaviors of the concrete.Particularly,this study captured the pore collapse-induced damage phenomenon during the high-pressure tunneling stage,which has been extensively reported in experiments but has usually been neglected in previous numerical investigations.