查看更多>>摘要:在关系抽取任务中,远程监督通过对齐知识库(KB)和文本来自动生成训练数据,从而解决了人工标注数据的问题.然而,远程监督不可避免会伴随着错误标签的问题.为了解决错误标签的问题,该文提出了基于PCNN(分段卷积神经网络)相似句袋注意力的远程监督关系抽取方法(PCNN-PATT-SBA),该模型提出了基于高斯分布的位置注意力机制(PATT),通过对非实体词与实体词之间的位置关系建模,为句子中每个单词分配相应的权重,从而降低噪声词的影响.另外,基于不同句袋之间的特征相似性,该文提出了相似句袋注意力机制(SBA),通过融合相似句袋的特征,从而达到解决单句子句袋信息过少的问题.在数据集New York Times(NYT)上的实验结果证明了该文提出方法的有效性,并且相对于句袋间注意力模型,在P@N值上提高了 6.9%.