首页期刊导航|中文信息学报
期刊信息/Journal information
中文信息学报
中文信息学报

孙茂松

双月刊

1003-0077

cips@iscas.ac.cn

010-62562916

100190

北京海淀区中关村南四街4号

中文信息学报/Journal Journal of Chinese Information ProcessingCHSSCDCSCD北大核心CSTPCD
查看更多>>本刊于1986年创刊,是经国家科委批准,由中国科学技术协会主管,中国中文信息学会和中国科学院软件研究所合办的学术性刊物,是中国中文信息学会会刊。《中文信息学报》是《中文核心期刊要目总览》自动化、计算机技术类的核心刊物。国内外公开发行。它及时反映我国中文信息处理的学术水平,重点刊登我国中文信息处理基础理论与应用技术研究的学术论文,以及相关的综述、研究成果、技术报告、书刊评论、专题讨论、国内外学术动态等。从本刊刊登的文章中可以及时了解我国最新的中文信息处理水平和学术动向。所刊登的文章多数得到了国家或省、部级重大科技项目、攻关项目及自然科学和社会科学基金的资助。
正式出版
收录年代

    第二十三届中国计算语言学大会(CCL 2024)开放注册

    中国中文信息学会
    118页

    基于子句单元的异构图网络抽取式文本摘要

    林群凯陈钰枫徐金安张玉洁...
    119-128页
    查看更多>>摘要:文本摘要的目标是将长文本进行压缩、归纳和总结,从而形成具有概括性含义的短文本,其能帮助人们快速获取文档的主要信息。当前大多数的抽取式文本摘要的研究都是以整句作为抽取单元,而整句作为抽取单元会引入冗余信息,因此该文考虑使用粒度更细的抽取单元。已有研究表明,细粒度的子句单元比整句单元在抽取式摘要上更具有优势。结合当下热门的图神经网络,该文提出了一种基于子句单元异构图网络的抽取式摘要模型,有效融合了词、实体和子句单元等不同层次的语言信息,能够实现更细粒度的抽取式摘要。在大规模基准语料库(CNN/DM和NYT)上的实验结果表明,该模型产生了突破性的性能并优于以前的抽取式摘要模型。

    子句异构图抽取式摘要

    基于模型校准和控制编码的多阶段知识对话系统

    孙泽田周雨琦户保田胡欣硕...
    129-138页
    查看更多>>摘要:基于搜索引擎的知识对话系统需要解决三个问题:何时检索(When),检索什么(What),如何将知识与对话历史融合(How)。该文将基于搜索引擎的知识对话系统拆解为三个阶段:对话模式选择,搜索词生成以及对话回复生成,并对对话模式选择和对话回复生成两个阶段进行优化:使用置信度校准的方式降低分类结果中假阴性样本的比例,提高对话模式判断的准确率并改善搜索词生成的质量;使用控制编码的方式对生成模型进行约束以提高模型生成回复时的知识利用率,并构建排序器对对话回复做进一步的筛选优化。实验表明,该文的方法对比基线模型有较大的效果提升。在2022年语言与智能技术竞赛的知识对话任务中,该知识对话系统获得第四名的成绩。

    知识对话系统自然语言处理

    基于层级图卷积网络的情绪识别模型

    聂小芳谭宇轩曾雪强左家莉...
    139-150页
    查看更多>>摘要:细粒度情绪识别模型采用比传统方法更多的情绪类别,能更为准确地捕捉人们 日常生活中经历和表达的情绪。然而,大幅增加的情绪类别以及细粒度情绪间存在的相互关联和模糊性,给细粒度情绪识别模型带来了挑战。已有情绪识别工作表明,引入情感词典等外部知识可以有效提升模型性能。但现有细粒度情绪识别模型引入情感知识的方式还较为简单,仍未考虑深层情感知识,例如,情感层级关系。针对上述问题,该文提出一种基于层级图卷积网络的情绪识别(Hierarchy Graph Convolution Networks-based Emotion Recognition,HGCN-EC)模型。HGCN-EC模型由语义信息模块、情绪层级结构知识模块和知识融合模块组成。语义信息模块提取文本的语义特征;情绪层级结构知识模块将细粒度情绪构建为树状层级结构并使用贝叶斯统计推断计算情绪之间的转移概率作为层级知识;知识融合模块采用图卷积网络将情绪层级知识与文本语义特征融合,用于实现情绪预测。在GoEmotions数据集上的对比实验结果表明,HGCN-EC模型具有相较于基线方法更优的细粒度情绪识别性能。

    细粒度情绪识别图卷积网络情绪层级知识GoEmotions

    一种不确定模态缺失的多模态对抗虚假新闻检测框架

    张永成魏小梅王欢徐荣康...
    151-160页
    查看更多>>摘要:当前虚假新闻的检测方法已经从传统的单一模态数据分析转向了多模态数据融合技术的应用。然而现有的多模态虚假新闻检测方法未充分考虑到现实场景中可能存在的模态缺失问题。模态的缺失可能会导致无法完整地抽取和融合新闻特征,从而降低模型的性能。该文提出一种新的虚假新闻检测框架,该框架在多模态特征学习中,加入了一个模态鉴别器,其在与特征生成器进行对抗训练的过程中学习不同模态组合之间的迁移特征,实现了在不确定模态缺失场景下的虚假新闻检测。通过在真实数据集上进行实验证明,该文所提出的框架在不确定模态缺失场景下优于最新的多模态虚假新闻检测方法。

    虚假新闻检测多模态对抗学习不确定模态缺失

    首届中国大模型大会(CLM2024)在北京举行

    后插1页