首页|基于神经网络算法的热轧钢板凸度预报

基于神经网络算法的热轧钢板凸度预报

扫码查看
提出了一种基于Elman神经网络的预测模型,并结合布谷鸟算法(CS)对网络的初始权值和阈值进行优化,以提高钢板凸度的预测精度.通过收集鞍钢股份有限公司热轧带钢厂的生产数据并进行预处理后训练模型,结果表明,本文提出的CS-Elman模型的平均绝对值误差(MAE)为1.3693、均方误差(MSE)为3.0843、平均绝对百分比误差(MAPE)为3.9025%,决定系数R2为0.95123,以上指标均较原始Elman算法表现出明显的提升.该预测模型能够有效挖掘生产数据中的潜在规律,为钢板凸度的精准预测提供了一种有效的解决方案,对优化热轧过程和提升产品质量具有重要的实际应用价值.
Profile-Predicting for Hot-Rolled Steel Sheets Based on Neural Network Algorithms
The prediction model based on the Elman neural network was proposed and then the initial weight values and threshold values in terms of networks were optimized by syncretizing the Cuckoo Search (CS) algorithm so as to improve the prediction accuracy of the profiles of steel sheets. After collecting production data from Hot Rolled Strip Steel Mill of Angang Steel Co.,Ltd. and pre-processing these data,the model was exercised experimentally,the experimental results showed that the proposed CS-Elman model was characterized by having the mean absolute error (MAE) of 1.3693,mean square error(MSE) of 3.0843,mean absolute percentage error (MAPE) of 3.9025%,and coefficient of determination R2 of 0.95123. All these indicators showed signifi-cant improvement compared to the original Elman algorithm. This prediction model can effectively extract underlying laws from production data,which provided an effective solution for accurately predicting the profiles of steel sheets. So this model had significant practical application values for optimizing hot rolling processes and improving product quality.

profile-predictingneural networkscuckoo search algorithmdata-driven

张守峰、王笑辰、赵健、赫竟彤、宋君、马晓国

展开 >

鞍钢股份有限公司热轧带钢厂,辽宁 鞍山 114021

鞍钢集团北京研究院有限公司,北京 102209

鞍钢股份有限公司硅钢事业部,辽宁 鞍山 114009

东北大学材料科学与工程学院,辽宁 沈阳 110819

展开 >

板凸度预测 神经网络 布谷鸟算法 数据驱动

2024

鞍钢技术
鞍钢技术中心

鞍钢技术

影响因子:0.202
ISSN:1006-4613
年,卷(期):2024.(5)
  • 13