首页|机器学习在金属微观组织图像分割中的应用

机器学习在金属微观组织图像分割中的应用

扫码查看
介绍了机器学习在金属微观组织图像分析中的应用,梳理了微观结构的发展历程.重点介绍了传统机器学习方法、深度学习方法、大模型在微观组织图像分割中的应用并进行了详细的总结和举例说明.其中,深度学习方法可以自动提取高维度特征,快速地对批量图像进行准确分割,但存在数据依赖性强,通用性差等缺点,在一定程度上限制了该方法的推广和应用.大模型的出现为其缺乏泛化能力和过分依赖数据等问题提供了新的解决方向.通过分析大模型在金属微观组织图像分割的应用,指明了大模型在金属材料领域的丰富前景,并探讨了未来大模型的主要发展方向.
Application of Machine Learning in Image Segmentation of Metal Microstructures
The application of machine learning in image analysis of metal microstructures was introduced,and also the development process of microstructures was reviewed.Particularly,these applications such as traditional machine learning method,deep learning method and large-scale model in microstructure image segmentation were mainly introduced,and then detailed summary and illustrative examples were carried out.Among these methods,the deep learning method could automatically extract high-dimensional features,quickly and accurately segment a batch of images.However,this method had some shortcomings such as strong data dependence and poor universality,which limited the popularization and application of this method to a certain extent.The emergence of large-scale models provided a new solution for the lack of generalization ability and excessive dependence on data.And then,by analyzing the applications of large models in the segmentation of metal microstructure images,the rich application prospect of large models in the field of metal materials was pointed out,and the main development direction of large-scale models in the future was discussed.

artificial intelligenceimage segmentationmicrostructuredeep learninglarge-scale model

陈嘉林、张玉琪、徐伟

展开 >

东北大学材料科学与工程学院,辽宁 沈阳 110819

东北大学轧制技术及连轧自动化国家重点实验室,辽宁 沈阳 110819

机器学习 语义分割 微观组织 深度学习 大模型

2024

鞍钢技术
鞍钢技术中心

鞍钢技术

影响因子:0.202
ISSN:1006-4613
年,卷(期):2024.(6)