首页|基于图像去雾和样本增强方法的目标检测精度提升研究

基于图像去雾和样本增强方法的目标检测精度提升研究

扫码查看
深度卷积神经网络在许多目标检测数据集上取得了较好的识别性能,然而,在雨、雾天气条件下,样品的稀缺一直是限制检测和识别准确性的重要问题.文章建立了一种基于图像去雾和样本增强的大雾场景目标检测方法.采用生成对抗网络(GAN)去除图像中的雾,能在保持图像内容和纹理风格基本不变的情况下,通过风格转移网络实现样本增强.此方法减少了纹理信息对网络模型的影响,使其更加关注物体形状的轮廓信息.在I-HAZE和REISDE数据集上的实验结果表明,该方法能有效提高目标检测精度,平均精度(mAP)可提高15%.
Research of Target Detection Accuracy Improvement Based on Image Defogging and Sample Enhancement
Deep convolutional neural network has achieved superior recognition performance on many target detection datasets.However,under the weather conditions of rain or fog,the scarcity of samples has al-ways been the problems restricting the accuracy of detection and identification.To solve this problem,this paper proposed an object detection method for heavy fog scenes based on image defogging and sample en -hancement.Firstly,generative adversarial network (GAN) is adopted to remove the fog from images,and then achieve sample enhancement by a style transfer network,which keeps the image content basically un-changed and transform the style of image texture.Fog-free dataset after sample enhancement can reduce the influence of the texture information on the network model and make it pay more attention to the contour information of the object shape.The experimental results on I-HAZE and REISDE dataset show that the proposed method can effectively improve the object detection precision and the mean average precision( mAP) can be improved by up to 15%.

image defoggingsample enhancementobject detectiongenerative adversarial network

刘鑫、常文婧、曹永祺、马欢

展开 >

国网安徽省电力有限公司, 安徽 合肥 230022

国网安徽省电力有限公司超高压分公司, 安徽 合肥 230041

合肥工业大学, 安徽 合肥 230009

图像去雾 样本增强 目标检测 生成对抗网络

安徽省自然科学基金

2108085UD11

2024

安徽电气工程职业技术学院学报
安徽电气工程职业技术学院

安徽电气工程职业技术学院学报

影响因子:0.287
ISSN:1672-9706
年,卷(期):2024.29(1)
  • 20