首页|基于ICOA算法优化LSTM的高压断路器故障诊断

基于ICOA算法优化LSTM的高压断路器故障诊断

扫码查看
文章以线圈电流波形的时间和电流值为特征量,断路器5 种典型故障为输出量,采用改进黑猩猩算法(Improved Chimp Optimization Algorithm,ICOA)对长短时记忆(Long Short Term Memory,LSTM)神经网络的三个关键参数进行优化,构建了基于ICOA-LSTM的高压断路器故障诊断模型.采用断路器故障数据进行仿真,并与现有断路器故障诊断模型进行对比分析.对比测试结果表明,ICOA-LSTM模型的诊断精度更高,计算时间更短,验证了ICOA-LSTM模型的优越性和有效性.
Fault Diagnosis of High-Voltage Circuit Breakers Based on Optimized ICOA-LSTM
This paper takes the time and current value of the coil current waveform as characteristic varia-bles,and five typical faults of circuit breakers as output variables.The Improved Chimp Optimization Algo-rithm(ICOA)is used to optimize the three key parameters of long short-term memory(LSTM)neural net-work,and a high-voltage circuit breaker fault diagnosis model based on ICOA-LSTM is constructed.Simu-lations were conducted using circuit breaker fault data and compared with existing circuit breaker fault di-agnosis models.The comparative test results show that the ICOA-LSTM model has higher diagnostic accura-cy and shorter calculation time,verifying the superiority and effectiveness of the ICOA-LSTM model.

high-voltage circuit breakerfault diagnosisimproved chimp optimization algorithmlong short-term memory neural networkaccuracy

金枝洁、方艳、吴卓伦

展开 >

国网黄石供电公司,湖北 黄石 435000

高压断路器 故障诊断 改进黑猩猩算法 长短时记忆神经网络 正确率

2024

安徽电气工程职业技术学院学报
安徽电气工程职业技术学院

安徽电气工程职业技术学院学报

影响因子:0.287
ISSN:1672-9706
年,卷(期):2024.29(3)