首页|基于改进YOLOv5s的交通标志检测

基于改进YOLOv5s的交通标志检测

扫码查看
在自动驾驶领域准确实时地检测出小目标交通标志具有重要意义,本文针对YOLOv5s算法检测小目标交通标志精度低、漏检等问题,提出了一种基于改进YOLOv5s的交通标志检测算法.将Transformer编码结构与C3模块结合,用新的C3 TR替换主干网络中最后一个C3模块,提高主干网络对图像全局特征信息的提取能力;用EIoU Loss替换YOLOv5s的定位损失函数,提高模型检测框的回归精度;在多尺度检测部分,通过增加一层浅层检测层作为更小目标的检测层,提高对小目标交通标志的检测能力.实验结果表明,改进YOLOv5s检测算法在CCTSDB数据集上的平均检测精度(mAP)为93.1%,比原YOLOv5s提升了3.6%,对小目标交通标志检测精度更高.
Improved YOLOv5s Traffic Sign Detection
It is of great significance to accurately detect small target traffic signs at real time in the field of autonomous driving.Aiming at problems such as low accuracy and missing detection of small target traf-fic signs by YOLOv5s algorithm,a traffic sign detection algorithm based on improved YOLOv5s was proposed.Transformer coding structure is combined with C3 module to replace the last C3 module in the trunk network with a new C3TR to improve the trunk network's ability to extract global feature infor-mation of images.EIoULoss was used to replace the positioning loss function of YOLOv5s to improve the regression accuracy of the model detection frame.In the multi-scale detection part,a shallow detec-tion layer is added as the detection layer of smaller targets to improve the detection ability of traffic signs.The experimental results show that the mean precision (mAP)of the improved YOLOv5s detec-tion algorithm on the CCTSDB data set is 93.1%,which is 3.6% higher than the original YOLOv5s de-tection algorithm,and the detection accuracy of small-target traffic signs is higher.

small objecttraffic sign detectionYOLOv5smultiscale detection

周晋伟、王建平、阜远远、张太盛、方祥建、王嘉鑫、王天阳

展开 >

安徽工程大学 机械工程学院,安徽 芜湖 241000

中车浦镇阿尔斯通运输系统有限公司 工程部,安徽 芜湖 241000

小目标 交通标志检测 YOLOv5s 多尺度检测

安徽省科技重大专项项目

202103a05020033

2024

安徽工程大学学报
安徽工程大学

安徽工程大学学报

影响因子:0.289
ISSN:2095-0977
年,卷(期):2024.39(2)
  • 8