首页|基于轻量化YOLOv5s的带钢表面缺陷检测算法

基于轻量化YOLOv5s的带钢表面缺陷检测算法

扫码查看
带钢表面是否有缺陷的检测对于工业生产来说很重要,针对工业场景下带钢表面缺陷检测算法参数量多、计算量大等问题,本文提出一种轻量化带钢缺陷检测GDSB-YOLOv5算法.首先,使用GhostNet作为主干网络,用来降低参数量和计算量,同时引入深度可分离卷积(DSConv),进一步降低参数量;其次,在3个Concat后加入SE(Squeeze-and-Excitation)注意力模块,有效提高目标特征的提取;最后,引入BiFPN加权双向金字塔结构替代FPN+PAN结构,提高特征图的融合效率.实验结果表明,GDSB-YOLOv5的平均检测精度为78%,相较于原始YOLOv5s算法提升了 1.3%,计算量和参数量分别降低51.2%和26%.该检测算法在保证平均检测精度的同时实现了算法的轻量化.
Strip Steel Surface Defect Detection Algorithm Based on Lightweight YOLOv5s
The detection of defects on the surface of strip steel is very important for industrial production.Aiming at the problems of large number of parameters and large computation volume of strip steel sur-face defect detection algorithms in industrial scenarios,a lightweight GDSB-YOLOv5 algorithm is pro-posed for detecting defects on strip steel.Firstly,GhostNet is used as the backbone network to reduce the number of parameters and the computation amount;meanwhile,depth-separable convolution(DSConv)is introduced to further reduce the number of parameters;secondly,Squeeze-and-Excitation(SE)attention module is added after the three concatenation to effectively improve the extraction of tar-get features.Finally,the BiFPN weighted bidirectional pyramid structure is introduced to replace the FPN+PAN structure to improve the fusion efficiency of the feature map.The experimental results show that the average detection accuracy of GDSB-YOLOv5 is 78%,which is 1.3%higher than the original YOLOv5s algorithm,and the computational and parametric quantities are reduced by 51.2%and 26%,respectively.The detection algorithm achieves the lightweight of the algorithm while ensuring the aver-age detection accuracy.

YOLOv5slightweightfeature fusionattention moduledefect detection

李晓孛、瞿成明、单传辉

展开 >

安徽工程大学电气工程学院,安徽芜湖 241000

YOLOv5s算法 轻量化 特征融合 注意力模块 缺陷检测

2024

安徽工程大学学报
安徽工程大学

安徽工程大学学报

影响因子:0.289
ISSN:2095-0977
年,卷(期):2024.39(5)