首页|基于改进YOLOv7的番茄果实目标检测

基于改进YOLOv7的番茄果实目标检测

扫码查看
针对农业采摘机器人在采摘过程中面临果实重叠、果实遮挡和果实体积小难以识别等一系列问题,提出一种改进YOLOv7网络对番茄果实进行目标检测.首先在YOLOv7网络结构中增加SimAM注意力模块和CA注意力模块,提高网络特征提取能力;其次结合特征融合网络的张量拼接操作与加权特征金字塔,提高特征融合能力;再用Soft-NMS算法代替NMS算法,增加网络对重叠区域的检测能力;最后将CIOU Loss替换成EIOU Loss,优化网络性能.实验结果表明,改进后的YOLOv7网络mAP值可达96.7%,准确率为96.2%,召回率为99.0%,满足网络对番茄检测精度的要求.
Tomato Fruit Target Detection Based on Improved YOLOv7
To solve fruit overlap,occlusion and recognition difficulty caused by small-size fruit for agricultural picking robots,an improved YOLOv7 network was proposed for tomato fruit target detection.Firstly,SimAM and CA attention modules were added to YOLOv7 network structure to improve the feature extraction capability.Secondly,the tensor splicing operation of the feature fusion network and the weighted Bidirection Feature Pyramid Network were combined to improve the feature fusion capability.The NMS algorithm was replaced by Soft-NMS algorithm to increase the detection ability in the overlapping area.Finally,CIOU Loss was replaced by EIOU Loss to optimize network performance.The results showed that the improved YOLOv7 network mAP value reached 96.7%;the accuracy reached 96.2%;the recall rate reached 99.0%,which met the network requirements for tomato detection accuracy.

YOLOv7attention mechanismSoft-NMSBiFPN

孙丙宇、单超、房永峰

展开 >

安徽建筑大学机械与电气工程学院,安徽合肥 230601

中国科学院合肥物质科学研究院,安徽合肥 230026

中国科学技术大学研究生院科学岛分院,安徽合肥 230026

YOLOv7 注意力机制 Soft-NMS BiFPN

中国科学院合肥物质科学研究院院长基金重点项目

YZJJZX202013

2024

安徽建筑大学学报
安徽建筑工业学院

安徽建筑大学学报

影响因子:0.354
ISSN:2095-8382
年,卷(期):2024.32(2)
  • 16