首页|基于RFID和LSTM的固定资产智能感知方法

基于RFID和LSTM的固定资产智能感知方法

扫码查看
针对传统基于射频识别的固定资产感知方法存在射频信号易受环境影响、多个标签互干扰、感知识别精度低等问题,提出一种基于射频识别(RFID)和长短期记忆神经网络(LSTM)的固定资产状态智能感知方法.为克服RFID信号接收时间非连续性导致的识别精度低问题,引入序列分析思想,使用LSTM对一段时间内接收到的RFID信号序列进行模式学习,构建基于RFID和LSTM的固定资产感知模型,实现固定资产位置的二分类辨识.所提方法在高校实验室条件下开展实测实验进行性能验证.结果表明,使用序列分析的固定资产状态感知模型辨识准确率可达99.26%,比传统基于离散时刻点的RFID感知模型辨识准确率高11.05%,且对多标签的识别准确率可达93.0%.
An Intelligent Perceptual Method of Fixed Assets Based on RFID and LSTM
To solve the disadvantages of traditional RFID-based fixed asset perception methods, such as vulnerability of radio signals to environmental interference, multiple tag interferences with each other, and low recognition accuracy, an intelligent perceptual method of fixed assets based on long and short-term memory neural networks (LSTM) and radio frequency identification (RFID) is proposed. The sequence analysis is introduced to deal with the low recognition accuracy caused by the discontinuity of RFID signal reception , and a LSTM-based model is developed to learn the pattern of RFID signal sequences received over a period of time, which can realize the two-category identification of the location of fixed assets. The proposed model has been validated by real experiments carried out in a university laboratory. The results show that the recognition accuracy of the fixed asset state using time sequence analysis can reach 99.26%, which is 11.05% higher than that of the traditional RFID perception model based on discrete moments, and the recognition accuracy of multiple tags can reach 93.0%.

LSTMRFIDperceptual recognitiontime sequencesreal time fixed assets monitoring

王萍、程红梅、丁伟、张红艳

展开 >

安徽建筑大学电子与信息工程学院,安徽 合肥 230601

智能建筑与建筑节能安徽省重点实验室,安徽 合肥 230022

安徽建筑大学经济与管理学院,安徽 合肥 230601

长短期记忆神经网络 射频识别 感知识别 时间序列 固定资产实时监测

安徽省高校学科拔尖人才学术资助项目安徽省高校学科拔尖人才学术资助项目安徽建筑大学智能建筑与建筑节能安徽省重点实验室主任基金项目安徽建筑大学校级科研项目

gxyq2022030gxbjZD2021067IBES2022ZR012021QDZ08

2024

安徽建筑大学学报
安徽建筑工业学院

安徽建筑大学学报

影响因子:0.354
ISSN:2095-8382
年,卷(期):2024.32(3)