首页|基于ResNet模型的松材线虫病变色疫木识别方法研究

基于ResNet模型的松材线虫病变色疫木识别方法研究

扫码查看
本文使用配备高分辨率RGB数码相机的无人机,在松林上空捕捉具有高空间分辨率的航空影像,并对获取的可见光正射影像进行高程和地形特征的预处理,提取纹理信息后采用ResNet神经网络进行分类和识别训练.最终,采用深度卷积网络训练的模型对松材线虫病变色疫木进行智能识别.结果显示,平均准确率为92.29%,识别精确率最高可达96.51%,同步验证了基于ResNet模型的松材线虫病变色疫木识别方法研究的可行性,以期为松材线虫病防治提供参考.
Study on the Identification Method for Discolored Pinewood Nematodiasis Infected Pines Based on ResNet Model
In this paper, the Unmanned Aerial Vehicle(UAV)equipped with a high-resolution RGB digital camera was used to catch high spatial resolution aerial images over the pines. The acquired visible orthophoto images were pretreated with elevation and topo-graphic features and had a classification and identification training with ResNet artificial neural network after extraction of texture infor-mation. Finally, a deep convolutional network-trained model was adopted for intelligent identification of discolored nematodiasis infect-ed pines. The results showed that the average identification accuracy rate was 92.29%with the highest rate reaching 96.51%. The feasi-bility of studying the identification method for discolored pinewood nematodiasis infected pines based on ResNet model wood was syn-chronously verified. The study is aimed to provide reference for pinewood nematodiasis control.

Pinewood nematodiasisUnmanned Aerial Vehicle(UAV)MonitoringResNet

郭婉琳、董广平、李晓娟、尹华阳、方薇

展开 >

安徽省林业科学研究院,安徽 合肥 230088

松材线虫病预防与控制技术国家林业和草原局重点实验室,安徽 合肥 230031

中国科学院合肥物质科学研究院,安徽 合肥 230031

松材线虫病 无人机 监测 ResNet

2024

安徽林业科技
安徽省林业科学研究院 安徽省林学会

安徽林业科技

影响因子:0.249
ISSN:2095-0152
年,卷(期):2024.50(1)
  • 15