首页|高分六号宽幅遥感影像在复杂山区地物分类中的应用

高分六号宽幅遥感影像在复杂山区地物分类中的应用

扫码查看
为评估其在多类地物分类中的有效性,本研究利用GF-6宽幅遥感影像(WFV),对四川西南部复杂山区开展大尺度地物分类研究.通过波段组合和植被指数计算,提升对植被健康状况的监测能力.特别是红边波段(B5)和黄波段(B8)的引入,为植被和土地利用分类带来了技术优势.在监督分类方法方面,采用了马氏距离、极大似然法、卷积神经网络(CNN)和支持向量机(SVM)4种方法.结果表明,SVM在处理高维光谱数据和复杂地形条件下表现出色,分类精度最高.马氏距离和极大似然法的分类精度较低,主要受数据假设和样本量限制的影响,而神经网络方法的表现不佳,主要是由于训练样本数量和多样性的不足,导致模型的泛化能力不强.综合以上结果,GF-6 WFV影像在地物分类中展现出优异性能,尤其在精准农业和林业管理方面.未来研究应关注多源遥感数据的整合,优化算法以提升分类精度,并减少计算资源消耗.
Application of Gaofen-6 WFV in complex mountain feature classification
Aiming to evaluate its effectiveness in multi-class land cover classification,the GF-6 WFV imagery was used to conduct large-scale land cover classification research in the complex mountainous region of southwest Sichuan.By combining spectral bands and calculating vegetation indices,the ability to monitor vegetation health was enhanced.The introduction of the red-edge band(B5)and yellow band(B8)provided new technical advantages for vegetation and land use classification.In terms of supervised classification methods,four approaches were employed,including Mahala-nobis distance,Maximum likelihood,Convolutional neural networks(CNN),and Support vector machine(SVM).The re-search indicated that SVM performed exceptionally well in handling high-dimensional spectral data and complex terrain conditions,achieving the highest classification accuracy.The classification accuracy of the Mahalanobis distance and Maximum likelihood methods was lower,mainly due to data assumptions and sample size limitations.The performance of the Neural network method was suboptimal,primarily due to insufficient quantity and diversity of training samples,which resulted in weak model generalization.The results demonstrated that GF-6 WFV imagery exhibits superior perfor-mance in land cover classification,particularly in precision agriculture and forestry management.Future research should focus on integrating multi-source remote sensing data,optimizing algorithms to improve classification accuracy,and re-ducing computational resource consumption.

mountain feature classificationwide field of viewmultispectral informationred-edgeSupport vector machine classification

张禄明、王宝江、孙洪、钟昆、李丹

展开 >

凉山农业数字化转型四川省高等学校重点实验室,四川西昌 615013

西昌学院,四川西昌 615013

山区地物分类 宽幅遥感影像 多光谱信息 红边波段 支持向量机监督分类

西昌学院博士科研启动项目

YBZ202138

2024

安徽农学通报
安徽省农学会

安徽农学通报

影响因子:0.275
ISSN:1007-7731
年,卷(期):2024.30(17)