首页|基于加权基因共表达网络分析和机器学习的肛瘘潜在生物标志物筛选及实验研究

基于加权基因共表达网络分析和机器学习的肛瘘潜在生物标志物筛选及实验研究

扫码查看
目的 利用加权基因共表达网络分析(WGCNA)、机器学习算法、免疫浸润分析和动物实验筛选肛瘘(AF)潜在的生物标志物。方法 下载基因表达数据库中包含AF和瘘管旁组织(PF)的转录组数据进行差异分析,对差异表达基因(DEGs)进行基因本体(GO)和京都基因与基因组百科全书(KEGG)信号通路富集分析。整合WGCNA结果和DEGs,筛选AF相关基因。利用最小绝对收缩和选择算子(LASSO)、支持向量机递归特征消除(SVM-RFE)和随机森林(RF)等机器学习方法筛选AF的潜在生物标志物,并进行免疫浸润分析,复制AF大鼠模型进行验证。结果 共获得377个DEGs,主要富集在B细胞受体信号通路、趋化因子信号通路等。机器学习算法筛选出AF的潜在生物标志物基质金属蛋白酶13(MMP13)。AF样本中记忆B细胞、浆细胞、M0巨噬细胞、M1巨噬细胞比例高于PF样本,静息CD4记忆T细胞、静息树突细胞比例低于PF样本。MMP13与M0巨噬细胞、活化肥大细胞和幼稚B细胞呈正相关;与静息肥大细胞呈负相关。实验结果显示,大鼠AF样本中 MMP13表达水平高于对照组。结论 AF发病涉及多种免疫细胞和信号通路,MMP13在AF组织中表达显著增高,与多种免疫细胞具有相关性,可能成为AF潜在的生物标志物。
Screening and experimental study of potential biomarkers for anal fistula based on weighted gene co-expression network analysis and machine learning
Objective To screen for potential biomarkers of anal fistula(AF)by using weighted gene co-expres-sion network analysis(WGCNA),machine learning,immune infiltration analysis,and animal experiments.Meth-ods Download transcriptome data from the gene expression omnibus containing AF and peri-fistula tissue(PF)for differential analysis.Gene ontology(GO)and Kyoto encyclopedia of genes and genomes(KEGG)pathway enrich-ment analyses on differentially expressed genes(DEGs)were performed.WGCNA results were integrated with DEGs to screen for genes related to AF.Machine learning methods such as the least absolute shrinkage and selec-tion operator(LASSO),support vector machine recursive feature elimination(SVM-RFE),and random forest(RF)were utilized to screen potential biomarkers for AF.Immune infiltration analysis was conducted and the AF rat model was replicated for validation.Results A total of 377 DEGs were obtained,mainly enriched in pathways such as B cell receptor signaling and chemokine signaling.Machine learning algorithms identified matrix metallo-proteinase 13(MMP13)as a potential biomarker for AF.In AF samples,memory B cells,plasma cells,M0 mac-rophages,and M1 macrophages were higher than in PF samples,while resting CD4 memory T cells and resting den-dritic cells were lower than in PF samples.MMP13 showed a positive correlation with M0 macrophages,activated mast cells,and immature B cells,and a negative correlation with resting mast cells.Experimental results showed that MMP13 expression levels were higher in rat AF samples compared to the control group.Conclusion The on-set of AF involves various immune cells and signaling pathways.MMP13 is significantly upregulated in AF tissue and correlates with multiple immune cells,making it a potential novel biomarker of AF.

anal fistulaweighted gene co-expression network analysismachine learningbiomarkerimmune infiltration

庞雪

展开 >

山东第一医科大学第一附属医院肛肠科,济南 250012

肛瘘 加权基因共表达网络分析 机器学习 生物标志物 免疫浸润

2024

安徽医科大学学报
安徽医科大学

安徽医科大学学报

CSTPCD北大核心
影响因子:1.095
ISSN:1000-1492
年,卷(期):2024.59(11)