首页|改进的密度聚类精确自适应提取LiDAR电力线点云方法

改进的密度聚类精确自适应提取LiDAR电力线点云方法

扫码查看
原有邻域半径rEps与密度阈值pMinPts两个参数的初始赋值导致电力线点云的提取结果存在不确定性,在密度聚类的基础上增添了点云簇类自适应判别方法,该方法避免人员重复测试初始参数的繁琐过程,采用C++语言完成了对该算法电力线精确提取及电力线拟合程序的开发与测试.结果表明:改进后的密度聚类法在电力线点云提取的损失率仅0.02%,三维重建残差为0.213 m;该方法大幅提高了电力线点云提取的准确性与便捷性,适用于高压电力走廊的电力巡检与三维重建等工作.
The initial assignment of the two parameters, the original neighborhood radius rEps and density threshold pMinPts, leads to uncertainty in the extraction results of power line point clouds. On the basis of density clustering, an adaptive discrimination method for point cloud cluster classes has been added. This method avoids the tedious process of repeated testing of initial parameters by personnel, and the C++language is used to complete the development and testing of the algorithm for accurate extraction and fitting of power lines. The results show that the improved density clustering method has a loss rate of only 0.02% in extracting power line point clouds, and a residual of 0.213 m in 3D reconstruction; this method greatly improves the accuracy and convenience of extracting power line point clouds and is suitable for power inspection and 3D reconstruction in high-voltage power corridors.

airborne LiDARpoint cloud dataDBSCANadaptivethree-dimensional reconstruction

纪凯、武永彩

展开 >

安徽交通职业技术学院 土木工程系,安徽 合肥 230051

西安思源学院 城市建设学院,陕西 西安 710038

机载LiDAR 点云数据 密度聚类 自适应 三维重建

安徽省高等学校自然科学研究重点项目(2023)安徽省高等学校自然科学研究重点项目(2022)安徽省高等学校优秀拔尖人才培育项目(2021)

2023AH0529652022AH052460gxbjZD2021127

2024

安徽职业技术学院学报
安徽职业技术学院

安徽职业技术学院学报

影响因子:0.225
ISSN:1672-9536
年,卷(期):2024.23(1)
  • 9