首页|基于Apriori优化的大数据挖掘技术研究

基于Apriori优化的大数据挖掘技术研究

扫码查看
为解决Apriori算法在大数据挖掘中存在数据负载大、挖掘效率低、冗余性高的问题,提出采用Map Reduce计算框架来优化Apriori数据挖掘算法,将计算任务划分为多个并行任务,提高数据处理效率.将改进的Apriori算法应用于网络入侵大数据挖掘中,并和传统Apriori算法进行对比.结果表明,改进的Apriori算法的数据挖掘效果优于传统Apriori算法,数据挖掘效率高,同时可以有效降低对网络入侵数据的误检率和漏检率.
Research on Big Data Mining Technology Based on Apriori Optimization
In the era of big data,big data mining provides data support for organizations to make accurate and scientific decisions.Apriori algorithm is widely used in big data mining,but it has problems such as large data load,low mining efficiency and high redundancy.The Apriori data mining algorithm is optimized by using Map Reduce framework to divide computing tasks into multiple parallel tasks to improve data processing effi-ciency.The improved Apriori algorithm is applied to network intrusion big data mining,and compared with traditional Apriori algorithm.The results show that the improved Apriori algorithm has higher data mining effi-ciency than the traditional Apriori algorithm,and can effectively reduce the false detection rate and missing detection rate of network intrusion data.

big data miningMap Reduce computing frameworkApriori algorithmCyber intrusion into big da-ta

豆利、何智勇

展开 >

合肥财经职业学院人工智能学院,安徽 合肥 230601

南京工业职业大学电气工程学院,江苏南京 210046

大数据挖掘 Map Reduce计算框架 Apriori算法 网络入侵大数据

2024

安阳师范学院学报
安阳师范学院

安阳师范学院学报

影响因子:0.221
ISSN:1671-5330
年,卷(期):2024.26(2)