首页|LNG气化站泄漏动态风险概率评估方法及应用

LNG气化站泄漏动态风险概率评估方法及应用

扫码查看
为了对液化天然气(LNG)气化站全作业周期内天然气泄漏的动态风险概率进行评估,基于贝叶斯网络及模糊集理论,提出了 LNG气化站全作业周期内天然气泄漏的动态风险概率评估方法,并结合实际案例进行了分析,得到了某气化站天然气泄漏的动态概率变化情况。结果表明,在无人为干预的情况下,气化站在运行过程中LNG泄漏的概率处于中等和偏低之间,应急阶段LNG泄漏的概率较大,储存阶段LNG泄漏的概率较小;通过贝叶斯网络的逆向推理功能,闪蒸气加热器质量、储罐质量、其他气化设备质量、储罐区管线质量、闪蒸气输送管线质量是导致应急阶段天然气泄漏的主要因素。该方法可以克服传统静态分析方法的不足,预测LNG气化站全作业周期内天然气泄漏风险概率的动态演化过程。可为LNG气化站的风险控制和安全管理提供技术参考。
Evaluation Method and Application of Dynamic Risk Probability of Leakage in LNG Gasification Station
In order to evaluate the dynamic risk prob-ability of natural gas leakage during the whole opera-tion cycle of liquefied natural gas gasification station,based on Bayesian network and fuzzy set theory,a dynamic risk probability assessment method of natural gas leakage during the whole operation cycle of lique-fied natural gas gasification station was proposed.The results showed that without human intervention,the probability of LNG leakage in the gasification station was between medium and low,the probability of LNG leakage in the emergency stage was larger,and the probability of LNG leakage in the storage stage was smaller.Through the reverse inference function of Bayesian network,the quality of flash steam heater,storage tank,other gasification equipment,pipeline in storage tank area and flash steam transmission pipeline were the main factors leading to natural gas leakage in emergency stage.This method can over-come the shortcomings of the traditional static analysis method and predict the dynamic evolution process of the natural gas leakage risk probability in the whole operation cycle of the LNG gasification station.It can provide technical reference for risk control and safety management of LNG gasification station.

Bayesian networkfuzzy setLNGgasi-fication stationrisk analysisgas leakagerisk as-sessment

郝武民、郑建国、张志鹏

展开 >

中核四〇四有限公司,甘肃嘉峪关 735100

中国辐射防护研究院,山西太原 030006

贝叶斯网络 模糊集 液化天然气(LNG) 气化站 风险分析 天然气泄漏 风险评估

中国辐射防护研究院青年基金

YQ22000207

2024

安全、健康和环境
中国石油化工股份公司青岛安全工程研究院

安全、健康和环境

影响因子:0.334
ISSN:1672-7932
年,卷(期):2024.24(3)
  • 13