首页|基于频域子空间字典学习的干气密封声发射信号降噪方法

基于频域子空间字典学习的干气密封声发射信号降噪方法

扫码查看
针对干气密封声发射信号信噪比低、易受背景噪声干扰等问题,提出了一种基于频域子空间字典学习的干气密封声发射信号降噪方法.首先根据声发射信号时频分布相邻相关信息获取各频带之间的相互关系,以此为依据确定频域划分的边界,并构建相应的经验小波族,在各子空间内利用时移不变字典学习算法进行声发射信号的稀疏重构,在此基础上利用重构信号的峭度指标进行各分量的加权.实验结果表明,所提算法将信号峭度指标由 48.43 提升至 185.93,实现了干气密封启动过程声发射信号降噪和碰磨特征增强.
A Noise Reduction Method for Acoustic Emission Signals of Dry Gas Seals Based on Frequency Subspace Dictionary Learning
Aiming at the problems of low signal-to-noise ratio and susceptibility to background noise in-terference in dry gas seal acoustic emission signals,a denoising method based on frequency domain sub-space dictionary learning was proposed.Firstly,ob-tain the mutual relationship between each frequency band based on adjacent relevant information of the time-frequency distribution of the acoustic emission signal.Based on this,the boundary of the frequency domain division was determined,and the correspond-ing empirical wavelet family was constructed.The sparse reconstruction of the acoustic emission signal was carried out in each subspace using the time shift invariant dictionary learning algorithm.On this ba-sis,the kurtosis index of the reconstructed signal was used to weight each component.The experimental re-sults showed that the proposed algorithm improves the signal kurtosis index from 48.43 to 185.93,achie-ving noise reduction of acoustic emission signals and enhancement of collision and wear characteristics dur-ing dry gas sealing start-up process.

dry gas sealacoustic emissionempiri-cal wavelet transformsparse dictionary learningsig-nal noise reduction

黄鑫、马骏、陈文武、屈定荣、刘景明

展开 >

化学品安全全国重点实验室,山东青岛 266104

中石化安全工程研究院有限公司,山东青岛 266104

中国石油化工股份有限公司科技部,北京 100728

中石化(天津)石油化工有限公司,天津 300271

展开 >

干气密封 声发射 经验小波变换 稀疏字典学习 信号降噪

中国石油化工股份公司科技部项目

323031

2024

安全、健康和环境
中国石油化工股份公司青岛安全工程研究院

安全、健康和环境

影响因子:0.334
ISSN:1672-7932
年,卷(期):2024.24(7)
  • 6