首页|基于张量的多线性思想对主成份分析方法的改进

基于张量的多线性思想对主成份分析方法的改进

扫码查看
张量的多线性方法把人脸图像看作是几何结构、表情、姿态和光照等多种因素的综合结果,运用张量方法分离出各个因素(如姿态,光照,人等)子空间,应用到人脸识别中。基于以上算法思想,提出主成份分析法(PCA)的一种改进方法,传统的PCA主要思想是将数据投影到正交的子空间中,改进后的PCA主要思想是:先对图像降维以减少图像矩阵的维数,然后,通过分解三维颜色张量的方法加入颜色信息,对张量进行中心化,运用张量方法进行人脸识别。实验结果表明该算法能有效提高性能。
An Improvement of PCA Based on the Idea of Multi - linear of Tensor
Tensor - based multilinear approaches regard human face as the composite consequence of geometries, viewpoints and illuminations, and use tensor decomposing algebra to get factor (i. e viewpoint, illumination, person, etc) subs, paces for recognition. Based on the above idea, we proposed an improvement of PCA: traditional PCA performs SVD decomposition on face iage data: A = U.VT and recognizes human face by projecting to U, now we project to , the idea is that V represents the sample space, so we project the unknown face to U and compare it to V, then we can find the nearest point in the sample space V, which the unknown belongs to. Here we give a few experiments and the results show the method performs better.

multi- linear projectiontensorPCA

胡小平

展开 >

安庆师范学院计算机与信息学院,安徽安庆246133

多线性投影 张量 主成份分析

2012

安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
年,卷(期):2012.18(4)
  • 1
  • 1