首页|基于Pochhammer k符号的Lupa?-Beta算子逼近性质

基于Pochhammer k符号的Lupa?-Beta算子逼近性质

扫码查看
参数型基函数曲线曲面造型的应用与相应算子的结构性质和收敛性质被广泛关注。为此,本文首次利用Be-ta 函数,构造了一种基于 Pochhammer k符号的Lupaş-Beta含幂参数型算子。同时,利用中心矩研究了该算子的Voronovs-kaya型渐进公式,根据Ditzian-Totik光滑模和Peetre'-K泛函讨论了其全局逼近,并借助函数的分解技巧和区间分割技术等研究了其关于导数为有界变差函数的点态估计。本研究将为该算子在曲线曲面造型中的应用提供关键的理论依据。
Approximation Properties of Lupa?-Beta Operators Based on Pochhammer k-Symbol
The application of curve and surface modeling of parametric basis functions,and the structural properties and convergence properties of the corresponding operators have attracted extensive attention from scholars at home and abroad.Therefore,in this paper,a type of Lupaş-Beta screen parameter operators based on Pochhammer k-symbol is constructed by us-ing Beta function for the first time.The Voronovskaya type asymptotic formula of the operators is studied using center mo-ment,the global approximation of the operators is discussed according to Ditzian-Totik moduli of smoothness and Peetre'K-functional,the pointwise estimate of the operators in terms of derivatives being bounded variation functions is studied by com-bining it with decomposition technique of functions and interval division technique.The research in this paper will provide the key theoretical basis for the application of this operator in curve and surface modeling.

Lupaş-Beta operatorsPochhammer k-symbolglobal approximationfunctions of bounded variation

程文韬、刘玉洁、杨瑞、华义平

展开 >

安庆师范大学数理学院,安徽安庆 246133

池州学院大数据与人工智能学院,安徽池州 247000

Lupaş-Beta算子 Pochhammer k符号 全局逼近 有界变差函数

国家自然科学基金安徽省自然科学基金安徽省高等学校自然科学研究重点项目安徽省高等学校自然科学研究重点项目

116260311908085QA29KJ2021A0648KJ2019A0572

2024

安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
年,卷(期):2024.30(1)
  • 2