安庆师范大学学报(自然科学版)2024,Vol.30Issue(1) :43-46.DOI:10.13757/j.cnki.cn34-1328/n.2024.01.007

一类带参数的超线性椭圆型方程边值问题的可解性

Solvability for Certain Superlinear Elliptic Equation Boundary Value Problem with Parameter

李殷杰 钟金标
安庆师范大学学报(自然科学版)2024,Vol.30Issue(1) :43-46.DOI:10.13757/j.cnki.cn34-1328/n.2024.01.007

一类带参数的超线性椭圆型方程边值问题的可解性

Solvability for Certain Superlinear Elliptic Equation Boundary Value Problem with Parameter

李殷杰 1钟金标1
扫码查看

作者信息

  • 1. 安庆师范大学数理学院,安徽安庆 246133
  • 折叠

摘要

本文研究了一类椭圆型方程Dirichlet边值问题的可解性,其中,非线性项包含了线性部分、参数及在无穷远处为超线性的部分.利用不动点定理及上下解方法来证明了该问题在参数λ充分小时正解的存在性;在非线性项满足Lipschitz连续及参数λ充分小时解的唯一性定理;同时论证了在一定条件下解的不存在性定理.最后分别给出了定理的应用实例.

Abstract

In this paper,we study the solvability of a class of Dirichlet boundar value problem for elliptic equation,in which the nonlinear term contains linear part,parameters and superlinear par-t at infinity.Using the fixed point theorem and method of lower and upper solution,it is proved that the existence of the positive solution when the parameter λ is sufficiently small,and the uniqueness theorem of the solution is proved when the nonlinear term is Lipschitz continuous and the parameterλ is sufficiently small.At the same time,the nonexistence theorem of the solution under certain conditions is proved.As for ap-plications of the theorem,practical examples are given respectively.

关键词

不动点定理/上下解方法/正解/极值原理

Key words

fixed point theorem/method of lower and upper solution/positive solutions/extreme value principle

引用本文复制引用

出版年

2024
安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
参考文献量9
段落导航相关论文