首页|一类带参数的超线性椭圆型方程边值问题的可解性

一类带参数的超线性椭圆型方程边值问题的可解性

扫码查看
本文研究了一类椭圆型方程Dirichlet边值问题的可解性,其中,非线性项包含了线性部分、参数及在无穷远处为超线性的部分.利用不动点定理及上下解方法来证明了该问题在参数λ充分小时正解的存在性;在非线性项满足Lipschitz连续及参数λ充分小时解的唯一性定理;同时论证了在一定条件下解的不存在性定理.最后分别给出了定理的应用实例.
Solvability for Certain Superlinear Elliptic Equation Boundary Value Problem with Parameter
In this paper,we study the solvability of a class of Dirichlet boundar value problem for elliptic equation,in which the nonlinear term contains linear part,parameters and superlinear par-t at infinity.Using the fixed point theorem and method of lower and upper solution,it is proved that the existence of the positive solution when the parameter λ is sufficiently small,and the uniqueness theorem of the solution is proved when the nonlinear term is Lipschitz continuous and the parameterλ is sufficiently small.At the same time,the nonexistence theorem of the solution under certain conditions is proved.As for ap-plications of the theorem,practical examples are given respectively.

fixed point theoremmethod of lower and upper solutionpositive solutionsextreme value principle

李殷杰、钟金标

展开 >

安庆师范大学数理学院,安徽安庆 246133

不动点定理 上下解方法 正解 极值原理

2024

安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
年,卷(期):2024.30(1)
  • 9