首页|基于迁移学习与改进的Mask R-CNN液晶屏缺陷检测方法

基于迁移学习与改进的Mask R-CNN液晶屏缺陷检测方法

扫码查看
针对液晶屏生产过程中出现的表面划痕、脏点、裂痕等细微缺陷,在有限数据集下探寻一种既能提高液晶屏表面缺陷的检测精度和速率又能满足实际工厂检测要求的检测方法,意义重大.基于此,本文提出一种基于迁移学习与改进的Mask R-CNN液晶屏缺陷检测方法,可解决传统的图像缺陷检测方法无法有效利用特征信息进行高精度检测与漏检的问题.设计K-means算法对缺陷液晶屏标注框进行聚类以获得合适的长宽比和锚框个数,并对改进的Mask R-CNN模型应用本文数据集对缺陷区域特征提取并进行训练分类.为加速模型收敛,利用迁移学习思想将DAGM 2007数据集在本文改进模型上预训练并得到最优权重且迁移到液晶屏缺陷检测任务中.同时与主要目标检测方法进行对比,结果表明:通过引入迁移学习与改进的Mask R-CNN方法,能在样本较少的情况下准确识别背景复杂且微小瑕疵缺陷,测试集缺陷识别达到95.25%,较改进前综合提升5%.
Research on Fine-Grained LED Screen Defect Detection Method Based on Improved Mask R-CNN
In the production process of LED screens,there are often delicate defects such as surface scratches,dirt spots,and cracks.In the case of limited data sets,it is necessary to explore a detection method that can improve the accuracy and speed of detection in LED screens'surface defects while meeting the requirements of actual factory inspections.Based on this,a liquid crystal display defect detection method based on improved Mask R-CNN and transfer learning is proposed.This method solves the problem of traditional image defect detection methods being unable to effectively utilize feature information for high-precision detection and misdetection.The K-means algorithm is designed to cluster the label frames of defective LED screens to obtain suitable aspect ratios and numbers of anchor frames.The improved Mask R-CNN model is applied to extract features from the defective regions of the data set in this paper and trained for classification.To accelerate convergence of the model,the transfer learning approach is employed by pre-training the DAGM 2007 dataset on the improved model and trans-ferring the optimal weights to the liquid crystal display defect detection task in this paper.Comparative experiments with ma-jor object detection methods show that the proposed method which combines transfer learning and improved Mask R-CNN,can accurately identify complex background and minor defect flaws with limited samples.The defects recognition rate on the test set reaches 95.25%,achieving a 5%overall improvement compared to the previous method.

object detectiontransfer learningK-meansMask R-CNN

王远志、范旭辉

展开 >

安庆师范大学计算机与信息学院,安徽安庆 246133

目标检测 迁移学习 K-means Mask R-CNN

2024

安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
年,卷(期):2024.30(1)
  • 9