安庆师范大学学报(自然科学版)2024,Vol.30Issue(1) :98-103.DOI:10.13757/j.cnki.cn34-1328/n.2024.01.016

基于对比学习的LightGCN推荐算法的改进

An Improved LightGCN Algorithm Based on Contrast Learning

刘启航 孙刚 马志远
安庆师范大学学报(自然科学版)2024,Vol.30Issue(1) :98-103.DOI:10.13757/j.cnki.cn34-1328/n.2024.01.016

基于对比学习的LightGCN推荐算法的改进

An Improved LightGCN Algorithm Based on Contrast Learning

刘启航 1孙刚 1马志远1
扫码查看

作者信息

  • 1. 阜阳师范大学计算机与信息工程学院,安徽阜阳 236000
  • 折叠

摘要

轻度图卷积神经网络(LightGCN)是推荐系统研究课题的热点,其将深度学习应用到推荐系统,并将系统中图卷积神经网络进行简化,大大提高了推荐性能.然而,其在LightGCN中的损失函数较单一,仅使用了BPR损失和L2正则化损失,未能充分利用数据集.基于此,本文将对比学习融入到LightGCN模型.具体来说,先设置一个边界以用来过滤相似度低的信息,再使用超参数来控制正负样本之间的相对权重,从而最大化正样本对,以及最小化已经过滤的负样本对间的相似性.结果表明,在相同实验设置下,本文改进算法较LightGCN评价指标有了提升,实验效果更好.

Abstract

Light Graph Convolution Neural Network(LightGCN)is a hot research topic in recommendation systems.It applies deep learning to recommendation systems and simplifies the graph convolution neural network applied in recommenda-tion systems,greatly improving the performance of recommendation.However,the loss function in LightGCN is relatively simple.Only BPR loss and L2 regularization loss are used,and the dataset is not fully utilized.In this research,it is proposed to integrate contrastive learning into the LightGCN model.Specifically,a boundary is set to filter information with low similar-ity,and super parameters are used to control the relative weight between positive and negative samples,maximize the similari-ty between positive sample pairs,and minimize the similarity between filtered negative sample pairs.This model makes the ex-periment better.The experimental results show that the evaluation index has been improved compared with LightGCN when the experiment is conducted on the same data set under the same experiment settings.

关键词

图卷积神经网络/对比学习/损失函数/推荐算法

Key words

GCN/comparative learning/loss function/recommended algorithm

引用本文复制引用

基金项目

国家自然科学基金(61906044)

安徽省教育厅自然科学研究项目(KJ2020ZD48)

阜阳师范大学科研创新团队项目(TDJC2021008)

阜阳师范大学科研项目(2020XXGNO1)

出版年

2024
安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
参考文献量10
段落导航相关论文