一类三元极小线性码的构造
Construction of a Class of Ternary Minimal Linear Codes
王玉琦 1孙敏 1陈文兵1
作者信息
- 1. 安庆师范大学 数理学院,安徽 安庆 246133
- 折叠
摘要
极小线性码作为一类特殊的线性码,在秘密共享方案、安全多方计算等方面有着重要应用,因此构造有限域上极小线性码有着重要意义.本文基于指数和、Krawtchouk多项式和Fm3中定义在特殊向量集上的函数,构造了一类新的不满足Ashikhmin-Barg条件的三元极小线性码,并确定了它们的重量分布和完全重量计数.
Abstract
Minimal linear codes, as a special category of linear codes, are critically important in applications such as se-cret sharing schemes and secure multi-party computation. It is of great significance to construct minimal linear codes over fi-nite fields. Based on exponential sum, Krawtchouk polynomials and functions defined on special vector sets, we construct a new class of ternary minimal linear codes that do not satisfy the Ashikhmin-Barg condition, and then determine their weight distribution and complete weight enumerator.
关键词
线性码/极小码/汉明重量/完全重量计数Key words
linear codes/minimal linear codes/hamming weight/complete weight enumerator引用本文复制引用
基金项目
国家自然科学基金(11626032)
安徽省高校优秀青年人才支持计划项目(gxyqZD2021120)
出版年
2024