首页|基于多层注意力机制的RGBT目标跟踪

基于多层注意力机制的RGBT目标跟踪

扫码查看
挖掘热红外和可见光数据的互补信息,可以有效提升复杂环境下视觉跟踪的鲁棒性。然而大多数方法在特征提取过程中只是独立提取单模态特征,忽略了多层特征建模对准确定位目标位置的重要作用。针对上述问题,本文提出了基于多层注意力机制的RGBT目标跟踪方法。首先,将多模态图片对输入骨干网络以提取两种模态的深度特征,同时在各层特征提取中引入模态注意力模块,用于过滤不准确的多模态信息,有效实现多层次多模态特征建模。此外,为了抑制多模态融合特征中的噪声和冗余信息,本文提出了模态融合模块,并利用该模块进一步实现多模态特征的自适应融合,从而获得更具有判别性的多模态特征。在两个公开数据集上的实验表明,本文方法在RGBT目标跟踪任务上实现了高精度和快速跟踪。
RGBT Tracking via a Multi-Layer Attention Mechanism
Extracting the complementary information of infrared and visible light data can effectively improve the robust-ness of visual tracking in complex environments. However, in the process of feature extraction, most of these methods only ex-tract single-modal features independently, ignoring the important role of multi-layer feature modeling in accurately locating the target position. Aiming at the above problems, this paper proposes an RGBT tracking based on a multi-layer attention mechanism. Firstly, the depth features of two modalities are extracted from the input backbone network of multi-modal imag-es, and at the same time, the modality attention module is introduced into each layer of feature extraction to filter inaccurate multi-modal information, thus realizing effective multi-level and multi-modal feature modeling. In addition, to suppress the noise and redundant information in multi-modal fusion features, a modality fusion module is proposed to further realize the adaptive fusion of multi-modal features and obtain more discriminating multi-modal features. Experiments on two public data-sets show that the proposed method generates higher tracking accuracy and speed.

RGBT trackingfeature modelattention mechanismmulti-modal fusion featuresadaptive fusion

吴毅、翟素兰、刘磊

展开 >

安徽大学 数学科学学院,安徽 合肥 230601

安徽大学 多模态认知计算安徽省重点实验室,安徽 合肥 230601

RGBT目标跟踪 特征建模 注意力机制 多模态融合特征 自适应融合

国家自然科学基金安徽大学数学学院开放课题

62076003KF2019A03

2024

安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
年,卷(期):2024.30(2)
  • 15