安庆师范大学学报(自然科学版)2024,Vol.30Issue(3) :29-36.DOI:10.13757/j.cnki.cn34-1328/n.2024.03.005

基于改进粒子群算法的风光储多能互补微网调度优化研究

Scheduling Optimization of Wind/PV/Battery Multi-Energy Complementary Microgrid Based on Improved Particle Swarm Optimization

邢翔宇 江善和 徐小艳
安庆师范大学学报(自然科学版)2024,Vol.30Issue(3) :29-36.DOI:10.13757/j.cnki.cn34-1328/n.2024.03.005

基于改进粒子群算法的风光储多能互补微网调度优化研究

Scheduling Optimization of Wind/PV/Battery Multi-Energy Complementary Microgrid Based on Improved Particle Swarm Optimization

邢翔宇 1江善和 1徐小艳1
扫码查看

作者信息

  • 1. 安庆师范大学 电子工程与智能制造学院,安徽 安庆 246133
  • 折叠

摘要

多能互补微网系统为电力系统的调度运行提供了较大的安全空间,但其存在系统组成复杂、目标多元和约束多重等问题,导致了系统的运行成本提高和系统的模型求解计算困难.为此,本文提出了一种由风力电机、光伏电机、储能电池、柴油发电机以及供电网络等设备共同组成的多能互补微网系统模型,建立了其相应的优化目标函数和约束条件,并通过改进传统粒子群算法IPSO对调度模型进行优化计算.同时,选取中国北方某一产业园区多能互补微网系统,并考虑单一经济成本、单一环境成本和综合成本3种优化运行场景,分别应用IPSO及其他算法进行优化求解.结果表明,IPSO算法不仅获得了各设备的出力调度负荷,实现系统功率平衡,而且能够在各自优化目标下系统运行并取得最优方案,验证了所建模型的合理性和求解算法的先进性.

Abstract

Multi-energy complementary microgrid system provides a large safety space for power system scheduling op-eration.However,these systems face challenges such as complex system composition,multiple targets and multiple con-straints,which lead to high operating costs and difficult optimization solution.To address these issues,a multi-energy comple-mentary microgrid system model composed of wind turbine,photovoltaic motor,energy storage battery,diesel generator set and power supply network group is proposed in this paper.The corresponding objective function and constraint conditions are established.An improved particle swarm optimization(IPSO)algorithm is applied to optimize the scheduling model.For a multi-energy complementary microgrid system in an industrial park of northern China,IPSO and other algorithms were ap-plied to optimize three optimal operation scenarios:single economic cost,single environmental cost and comprehensive operat-ing cost.The results show that the IPSO algorithm can not only achieve the power balance of the system by obtaining the out-put scheduling load of each device,but also find the optimal scheme under the respective optimization objectives.The rational-ity of the proposed model and the effectiveness of the given IPSO algorithm have been verified.

关键词

多能互补微网/改进粒子群算法/调度优化

Key words

multi-energy complementary microgrid/improved particle swarm optimization/scheduling optimization

引用本文复制引用

基金项目

安徽省自然科学基金(2008085MF197)

出版年

2024
安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
参考文献量10
段落导航相关论文