首页|改进的CenterNet肺结节检测

改进的CenterNet肺结节检测

扫码查看
基于深度学习的目标检测算法已广泛应用于肺结节检测研究,但受限于肺结节体积较小、位置多变及肺部纹理复杂等特性,当前检测精度仍有待进一步提升。本文通过抑制非目标特征,并强调肺结节信息,提出了一种改进CenterNet的肺结节检测方法。该方法基于CenterNet架构,将深度残差网络ResNet50和CBAM注意力机制模块相结合以进行ResNet50+CBAM的设计,有效促进了不同层肺结节特征信息的提取,即使在网络层数较深情况下,肺结节检测也能保持良好的模型训练效果。实验结果显示,在mAP、Recall和Precision等代表性评价指标上,本文算法优于多个对比算法,证明了其在肺结节检测中的有效性。
Improved CenterNet-Based Pulmonary Nodule Detection
Deep learning-based target detection algorithms have been widely used in the detection of pulmonary nodules.However,due to the small volume,variable location,and complex texture of lung tissue,the detection accuracy of pulmonary nodules still requires further improvement.In this paper,we propose an improved CenterNet algorithms for pulmonary nod-ules detection by suppressing non-target features and emphasizing nodule information.This method integrates the deep residu-al network ResNet50 and the CBAM attention module,enhancing the extraction of nodule characteristic information across different layers.Even with a deep network structure,the detection model maintains good training effectiveness.Experimental results show that our algorithm outperforms several comparative algorithms in representative evaluation metrics such as mAP,Recall and Precision,indicating that its effectiveness in pulmonary nodule detection.

target detectionpulmonary nodulesCenterNet algorithmCBAM attention module

王远志、张艳红

展开 >

安庆师范大学 计算机与信息学院,安徽 安庆 246133

目标检测 肺结节 CenterNet算法 CBAM注意力机制

安徽省教育厅自然科学研究重点项目国家重点研发计划项目

KJ2018A0359SQ2020YFF0402315

2024

安庆师范大学学报(自然科学版)
安庆师范学院

安庆师范大学学报(自然科学版)

影响因子:0.252
ISSN:1007-4260
年,卷(期):2024.30(3)
  • 4