首页|混合策略在水泥窑炉煅烧NOx浓度预测中的应用

混合策略在水泥窑炉煅烧NOx浓度预测中的应用

扫码查看
NOx体积分数是反映水泥窑炉煅烧过程中氮排放的一个关键环保指标.水泥煅烧过程具有大噪声、大时滞和非线性等复杂特性.为了解决以上难点,提出基于互补集合经验模态分解(Complemementary Ensemble Empirical Mode Decomposition,CEEMD)、熵 原理的 互信息(Mutual Information,MI)、最大相关最小冗余算法(Max-Relevance and Min-Redundancy,mRMR)和天牛须搜索算法(Beetle Antennae Search,BAS)优化神经网络(Back Propagation Neural Network,BPNN)的混合策略,并用于NOx体积分数预测.首先,CEEMD和中值平均滤波用于处理大噪声.同时,利用熵原理的MI和mRMR进行时滞分析和变量选择,解决大时滞问题.其次,利用BAS提高多层前馈(Back Propagation,BP)神经网络的预测能力,并解决非线性工况问题.最后,将该策略进行工业应用.结果显示,在25 900个工业测试样本中,两组的均方根误差(Root Mean Squared Error,RMSE)和平均绝对误差(Mean Absolute Error,MAE)分别仅为 0.302 4、0.205 9和0.215 3、0.201 3.预测模型结果可指导水泥脱硝操作人员精准喷氨,减少NOx排放并降低氨水用量和氨逃逸情况.
Application of hybrid strategy for NOx volume fraction prediction in cement kiln calcination
NOx volume fraction is a key environmental indicator that responds to the nitrogen emissions in the cement kiln calcination process.Due to the complex characteristics of the cement calcination process such as large noise,large time lag,and non-linearity.To cope with these characteristics,this study proposes an algorithm based on Complementary Ensemble Empirical Mode Decomposition(CEEMD),Mutual Information(MI)with entropy principle,Max-Relevance and Min Redundancy(mRMR),and Beetle Antennae Search(BAS)optimization Back Propagation Neural Network(BPNN)hybrid strategies for NOx volume fraction prediction.Firstly,the CEEMD method is used to decompose the original data and calculate the correlation to select the characterized high-frequency data using median average filtering for processing,which can effectively cope with large noise and provide modeling high-quality data,making the model accuracy improved.Besides,the MI of the entropy principle is used for temporal matching,and the matched sample set is selected using the mRMR algorithm for relevant variables,which reduces the coupling between variables and eliminates the influence of large time lags on prediction accuracy.On the other hand,the BAS algorithm and BP neural network are fused into one system,the former is used for system initial weight optimization and the latter is used for system weight training,both of which promote each other and solve the nonlinear working condition problem.Finally,the strategy is applied industrially,and the Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)are only 0.302 4,0.205 9 and 0.215 3,0.201 3 in 25 900 industrial test samples,which are much better than other models,verifying the effectiveness of the strategy.The NOx volume fraction predicted in advance can provide reference for SNCR ammonia flow control,and adjust the ammonia flow control in advance to effectively stabilize NO,emission,while saving ammonia consumption,effectively reducing denitrification costs and improving enterprise quality development.

environmental engineeringNOx emissionmutual informationcomplementary ensemble empirical mode decompositionmax-relevance and min-redundancybeetle antennae search

陈延信、刘玄芝、贺宁、姚艳飞

展开 >

西安建筑科技大学材料科学与工程学院,西安 710000

西安建筑科技大学机电工程学院,西安 710000

环境工程学 NO,排放 互信息 互补集合经验模态分解 最大相关最小冗余 天牛须搜索算法

国家重点研发计划陕西省重点科技创新团队项目陕西省自然科学基础研究计划

2016YFB03034002021TD-532019JLZ-05

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(2)
  • 22