首页|低照度下改进YOLOX的煤矿无人电机车轨道障碍物检测方法

低照度下改进YOLOX的煤矿无人电机车轨道障碍物检测方法

扫码查看
为解决地下煤矿光照不足进而导致无人电机车脱轨、撞车或侧翻等问题,提出了一种低照度多特征融合的YOLOX-CBAM目标检测算法,对矿井无人电机车轨道障碍物进行有效识别与分类。首先,通过实际场景采集及标注构建地下煤矿障碍物数据集,并将其输入微光数据处理Zero_DCE模型中;其次,对YOLOX目标检测网络进行改进,分别在骨干网络CSPDarknet和特征金字塔(Feature Pyramid Networks,FPN)部分增加双通道CBAM注意力模块,解决了特征提取环节通道单一的问题;最后,将预测头部分的损失函数替换成SIoU,加快了模型迭代的速度。结果表明,与传统两阶段Faster-RCNN网络、YOLOv4网络、YOLOv5网络和原YOLOX网络相比,本模型精确率分别提高了 4。65百分点、2。65百分点、2。19百分点、1。35百分点,召回率分别提高了 9。39百分点、4。36百分点、0。82百分点、0。76百分点,速度分别提高了 28。6帧/s、16帧/s、13。6帧/s、2。9帧/s,同时本模型与分别添加 CBAM、SA、SA+SIoU、SE、SE+SIoU,YOLOX-CBAM模块的YOLOX模型相比,其精度分别提高了 0。64百分点、0。84百分点、1百分点、1。29百分点和0。76百分点,速度分别提高了 0。5帧/s、0。4帧/s、0。3帧/s、0。2帧/s和0。4帧/s。所提出的方法能实现地下煤矿井下无人电机车轨道障碍物的快速准确检测,并为地下矿运输设备的智能化升级及安全运行提供理论支撑。
An improved YOLOX detection method for tracking obstacles of unmanned electric locomotives in coal mines under low lighting
To solve the problems such as derailment,collision,and rollover of unmanned electric locomotives caused by insufficient lighting in underground coal mines,a YOLOX-CBAM target detection method considering multiple features of low light is proposed.This method can effectively identify and classify obstacles on the track.First,through the collection and labeling of actual scenes,a dataset of obstacles in coal mines is constructed.Second,the dataset is fed into the Zero_DCE model for data processing.Third,the YOLOX object detection network is improved by adding a dual-channel CBAM attention module in the backbone network and the feature pyramid network respectively,to solve the problem of incomplete data feature extraction by a single channel.Fourth,the loss function in the YOLO header is replaced by SIoU to speed up model iteration.Finally,the CBAM,SA,SA+SIoU,SE,and SE+SIoU modules are added to the YOLOX model to verify the influence of the CBAM attention mechanism and the SIoU loss function on the performance of the YOLOX model.The results show that compared with the two-stage Faster-RCNN network,YOLOv4 network,YOLOv5 network,and the original YOLOX network,the accuracy of the model in this study increases by 4.65 percentage point,2.65 percentage point,2.19 percentage point,and 1.35 percentage point respectively,the recall rate increases by 9.39 percentage point,4.36 percentage point,0.82 percentage point and 0.76 percentage point respectively,and the speed is improved by 28.6 FPS,16 FPS,13.6 FPS,and 2.9 FPS respectively.Compared with the YOLOX model adding CBAM,SA,SA+SIoU,SE and SE+SIoU modules respectively,the accuracy of the model in this study is increased by 0.64 percentage point,0.84 percentage point,1 percentage point,1.29 percentage point,and 0.76 percentage point respectively,and the speed is improved 0.5 FPS,0.4 FPS,0.3 FPS,0.2 FPS,and 0.4 FPS respectively.The method proposed in this study can quickly and accurately detect obstacles on the track of unmanned electric vehicles in coal mines,and provide theoretical support for the intelligent upgrade and safe operation of underground transportation equipment,to reduce the accident rate of coal mining enterprises.

safety engineeringunderground unmanned electric locomotivetarget detectionCBAM attention mechanismSIoU loss function

章赛、纪凡、卢才武、江松、李萌、刘力、刘迪、朱兴攀

展开 >

西安建筑科技大学资源工程学院,西安 710055

西安市智慧工业感知、计算与决策重点实验室,西安 710055

西安建筑科技大学管理学院,西安 710055

陕西陕煤榆北煤业有限公司,陕西榆林 719000

展开 >

安全工程 井下无人电机车 目标检测 CBAM注意力机制 SIoU损失函数

国家自然科学基金面上项目陕西省自然科学基金青年项目陕西省自然科学联合基金项目

519742232023-JC-QN-05132019JLP-16

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(3)
  • 29