首页|声发射法检测输气管道泄漏的研究综述

声发射法检测输气管道泄漏的研究综述

扫码查看
声发射法检测管道泄漏是目前的热点方法,研究涉及泄漏信号的产生与传播、信号拾取与处理、基于信号的智能识别与定位等。通过介绍声发射检测定位原理及一些基本规律,详细分析小波分析、局域均值分解、经验模态分解、变分模态分解在处理泄漏信号时的优劣,探讨人工智能在处理管道泄漏声发射信号中的应用,总结管道泄漏的模态研究、相关试验研究,来理清基于声发射的管道泄漏检测现状及展望未来发展。
Review of research on acoustic emission methods to detect gas transmission pipeline leaks
The detection of gas pipeline leakage by acoustic emission method is a hot method at present.The research involves the generation theory and propagation law of acoustic emission signal of pipeline leakage,the picking and processing method of acoustic emission signal of leakage,and the intelligent identification and location of leakage source based on the signal.This article will review the research on acoustic emission detection of gas pipelines.Firstly,the principle of acoustic emission detection and location of pipeline leakage and the basic law of leakage acoustic emission signal generation are introduced.Then,the leakage source location method and related signal processing methods are described.In the aspect of signal processing,the application of wavelet analysis,local mean decomposition,empirical mode decomposition,and variational mode decomposition in dealing with leakage signals is emphatically analyzed.The advantages and disadvantages of various methods in identifying and locating leakage sources are analyzed in detail.The application of artificial intelligence represented by artificial neural networks,support vector machines,and deep learning in dealing with pipeline leakage acoustic emission signals is discussed.The research on longitudinal mode,torsional mode,and flexural mode of gas pipeline leakage signal and its application in leakage location are summarized.Besides,the experimental research status of leakage acoustic emission signal characteristics under different conditions is combed.Finally,it is concluded that the main difficulty of acoustic emission detection and location of gas pipeline leakage lies in the identification and extraction of leakage characteristics.The future research direction will focus on signal processing to improve the accuracy and distance of positioning.It is necessary to deepen the application of artificial intelligence in processing a large number of monitoring signals.The experimental research mainly explores the leakage characteristics under different conditions and establishes the characteristic leakage database.

public safetypipelinesleaksacoustic emission detectionsignal processingreview

王云刚、宋代东、李兵兵、祁嘉宁

展开 >

河南理工大学安全科学与工程学院,河南焦作 454000

河南理工大学河南省瓦斯地质瓦斯治理省部共建国家重点实验室培育基地,河南焦作 454000

河南理工大学煤炭安全生产河南省协同创新中心,河南焦作 454000

公共安全 管道 泄漏 声发射检测 信号处理 综述

国家自然科学基金项目河南理工大学一流学科资助项目

U1704129AQ20230722

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(3)
  • 90