首页|基于神经网络的二元混合液体自燃温度预测

基于神经网络的二元混合液体自燃温度预测

扫码查看
自燃温度(Auto-Ignition Temperature,AIT)是防火防爆安全设计的关键临界参数之一.为解决目前多数采用试验方法测量混合物AIT费时费力且有一定危险性的问题,运用定量结构-性质关系方法,使用反向传播神经网络(Back Propagation Neural Network,BPNN)和一维卷积神经网络(one-Dimensional Convolutional Neural Network,1DCNN)技术建立二元混合液体AIT预测模型.以二元混合液体的分子描述符为输入、试验测得的AIT为输出,经多种方法对模型的拟合性、稳定性和预测能力评价验证.结果表明,BPNN模型和1DCNN模型均有良好的预测能力,其均方根误差分别为4.780℃和9.603 ℃,拟合度与5折交叉验证拟合度差值分别为0.058和0.040,表明BPNN模型有更好的拟合能力,1DCNN模型有良好的稳定性.
Neural network-based prediction of auto-ignition temperature of binary mixed liquids
Auto-Ignition Temperature(AIT)is one of the crucial parameters in the design of fire and explosion safety measures.However,the current experimental methods used to measure the AIT values of mixed liquids are time-consuming,labor-intensive,and hazardous.This study employs the Quantitative Structure-Property Relationship(QSPR)approach and utilizes a Back Propagation Neural Network(BPNN)and a one-Dimensional Convolutional Neural Network(1DCNN)to establish a predictive model for AIT values of binary mixed liquids.The input parameters of the experiment were molecular descriptors of the binary mixed liquids,and the output parameters were the experimentally determined AIT values.The model's fitting degree,stability,and predictive abilities were assessed and validated using various methods,followed by a determination of its applicability range and a comprehensive interpretation.According to the results,the BPNN and 1DCNN models in the training set have root mean square errors of 4.780℃ and 9.603℃,respectively.The corresponding average absolute errors are 3.775 ℃ and 7.842 ℃,and the average absolute percentage errors are 18.202%and 18.488%.The difference between the goodness of fit and the 5-fold cross-validation goodness of fit are 0.058 and 0.040,respectively.These findings indicate that the BPNN model exhibits excellent fitting capabilities,the 1DCNN model demonstrates good stability,and both models display satisfactory predictive abilities.The leverage method is used to determine the models'applicability range,and it is found that the leverage values in the application domain analysis diagram all fell within the applicable range(within the standard residual range of±3 and to the left of the standard leverage value).The shapley additive explanation method is utilized to assess the impact of nine atom types on the AIT values of binary mixed flammable liquids.The results reveal that both models exhibit the highest predictive accuracy for binary mixed liquids of alkanes and alcohols.

safety engineeringBack Propagation Neural Network(BPNN)one-Dimensional Convolutional Neural Network(1DCNN)binary mixed liquidsauto-ignition temperature

胡双启、郭丙宇、程泽会、吴薇

展开 >

中北大学环境与安全工程学院,太原 030051

中北大学软件学院,太原 030051

安全工程 反传播神经网络(BPNN) 一维卷积神经网络(1DCNN) 二元混合液体 自燃温度

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(5)