首页|低压货舱多参数火灾探测集成模型的优化选择

低压货舱多参数火灾探测集成模型的优化选择

扫码查看
针对低压飞机货舱环境下单模型的烟雾探测算法不灵敏的问题,给出了一种基于二次优化选择(Quadratic Optimization Choice,QOC)策略的集成分类模型.首先,对多种火灾特征参数包括CO体积分数、温度、湿度、红外和蓝光波长光散射功率信号、烟颗粒索特平均直径及对应增长率进行增益评估,筛选出关联度高的参数作为属性,通过特征工程和性能对候选分类器进行排序,然后采用QOC策略和软投票法集成机制确定次级分类器,最后指定多层感知器(Multilayer Perceptron,MLP)作为元分类器的模型集成方法,以提高烟雾探测模型在真实飞行环境的准确性和鲁棒性.模型性能将基于精确率、召回率和F1、F2、F3指标进行比较.结果表明,集成模型应用于60 kPa低压环境烟雾探测结果优于K邻近算法(KNearest Neighbor,KNN)和MLP,对榉木和航空汽油可燃物分别具有0.972 4和0.960 1的分类精确率,较原始算法KNN分别提高了 0.087 2和0.062 6,较原始算法MLP分别提高了 0.036 8和0.182 2,集成模型具有更好的性能.
Low pressure environments multi-sensor fire detection algorithm ensemble model of quadratic optimization choice
An ensemble classification model based on Quadratic Optimization Choice(QOC)is proposed to target the problem of insensitive smoke detection in low-pressure aircraft cargo compartment environments.The model leverages a comprehensive evaluation of multiple fire feature parameters,including CO concentration,temperature,humidity,dual-wavelength PTR,Sauter mean diameter and growth rates.Through the Weka attribute evaluator,highly correlated attributes are identified and selected as input features for the subsequent steps.In the feature engineering stage,the candidate classifiers are ranked based on their performance and suitability for the given problem.To combine the strengths of different classifiers effectively,a soft voting mechanism is adopted.This mechanism allows the secondary classifiers to contribute their predictions to the final decision-making process based on their respective confidences.Therefore,the ensemble model can leverage the diverse perspectives of its component classifiers,resulting in improved accuracy and robustness in real-flight environments.The meta-classifier chosen for the model integration is Multilayer Perceptron(MLP)whose flexibility allows it to adapt and generalize well to various scenarios.To assess the performance of the ensemble model,precision,recall,F1,F2,and F3 scores are used for comparison with KNN and MLP.Experimental results demonstrate that the proposed method outperforms both K Nearest Neighbor(KNN)and MLP when applied to smoke detection in a 60 kPa low-pressure environment.Overall,the ensemble classification model based on QOC,combined with soft voting and MLP as a meta-classifier,offers a solution for enhancing the accuracy and robustness of smoke detection in low-pressure aircraft cargo compartments.This ensemble classification model has 0.972 4 and 0.960 1 classification accuracies,which are 0.087 2 and 0.062 6 higher than KNN and 0.036 8 and 0.182 2 higher than MLP.The comprehensive evaluation of fire feature parameters and the thoughtful selection of classifiers contribute to the model's ability to handle complexities and variations,making it a valuable tool for ensuring flight safety and mitigating potential fire hazards.

safety engineeringfire detectionaircraft cargo compartmentmulti-parameterensemble model

邓力、吴丹丹、周进、贺元骅、刘全义、王海斌

展开 >

中国民航飞行学院民航安全工程学院,四川广汉 618307

民机火灾科学与安全工程四川省重点实验室,四川广汉 618307

安全工程 火灾探测 飞机货舱 多参数 集成模型

国家自然科学基金重点项目德阳市科技局重点研发项目四川省院省校合作项目四川省重点实验室项目

U20332062021SZ0012022YFSY0048MZ2022JB01

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(5)