首页|Prophet-LSTM组合模型在运输航空征候预测中的应用

Prophet-LSTM组合模型在运输航空征候预测中的应用

扫码查看
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法.首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1-12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证.结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.097 3、16.128 5%、0.128 7.相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和 GM(1,1)+ARIMA+LSTM 组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了 0.025 9、10.487 4 百分点、0.014 3 和 0.012 8、2.059 9 百分点、0.008 6,验证了 Prophet-LSTM组合模型的预测精度更高,性能更优良.
Application of Prophet-LSTM combined model in prediction of air transportation incidents
To achieve accurate predictions of the air transportation incident per 10 000 flight hours in China,a novel method that combines time series and neural network models was proposed.First,a Prophet model was established using the air transportation incident per 10 000 flight hours data from January 2008 to December 2020.The RStudio software was used to fit the model and obtain the linear part of the air transportation incident per 10 000 flight hours.Secondly,an Long Short-Term Memory(LSTM)neural network model was used to capture the nonlinear part of the air transportation incident per 10 000 flight hours.Lastly,the Prophet-LSTM combination model was established using the reciprocal variance method.The combination model was used to predict the air transportation incident per 10 000 flight hours from January to December 2021,and the predicted results were compared with the actual values.It can be concluded that the three models'responses to the periodic fluctuations and evolution trend characteristics of time series data are generally consistent with the actual situation from the predicted curve chart.All three models can be used to evolve the patterns of air transportation incidents.However,the effectiveness of prediction is measured by the size of three indicators;EMA,EMAP,and ERMS.The smaller the values of the three indicators are,the higher the prediction accuracy of the model is.The results show that the EMA,EMAP,and ERMS of the Prophet-LSTM combination model are 0.097 3,16.128 5%,and 0.128 7.The EMA,EMAP,and ERMS of the Prophet model are 0.123 3,20.046 5%,and 0.150 8.The EMA,EMAP,and ERMS of the LSTM model are 0.098 8,16.309 0%,and 0.132 5,respectively.Compared with the single model,the precision of the Prophet-LSTM combined model is significantly improved,respectively.Compared to the existing ARIMA+BPNN combination model and GM(1,1)+ARIMA+LSTM combination model,the Prophet-LSTM combination model reduces the EMA,EMAP,and ERMS by 0.025 9,10.487 4 percentage points,and 0.014 3,respectively,and 0.012 8,2.059 9 percentage points,and 0.008 6.The results demonstrate that the Prophet-LSTM combination model has higher prediction accuracy and better performance.

safety social engineeringair transportation incidentProphet modelLong Short-Term Memory(LSTM)modelcombination prediction model

杜红兵、邢梦柯、赵德超

展开 >

中国民航大学安全科学与工程学院,天津 300300

安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(LSTM)模型 组合预测模型

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(5)