首页|钢筋混凝土排架结构厂房再生利用施工安全风险预警

钢筋混凝土排架结构厂房再生利用施工安全风险预警

扫码查看
为确保钢筋混凝土排架结构厂房再生利用施工过程中的结构安全,在系统梳理钢筋混凝土排架结构厂房再生利用施工安全风险主要影响因素和控制要点的基础上,通过对再生利用施工安全模拟与监测内容的分析,构建了包括5个一级指标、16个二级指标、45个量化指标的再生利用施工安全风险预警指标体系;在预警方法对比分析的基础上,基于改进的广义回归神经网络(General Regression Neural Network,GRNN)算法构建了钢筋混凝土排架结构厂房再生利用施工安全风险预警模型,并以多个工程项目为实例,实现了数据降维(特征主元提取)后的单因素风险与多因素风险预警,最后与现场实际情况进行对比分析,验证了模型的可靠性。研究表明,该模型是核主成分分析(Kernel Principal Component Analysis,KPCA)-量子粒子群算法(Quantum Particle Swarm Optimization,QPSO)-GRNN 方法的有机结合,为定量研究钢筋混凝土排架结构厂房再生利用施工安全风险预警提供了新的思路。
Early warning of safety risks in construction of recycling and utilization of reinforced concrete shelving structure plant
The purpose of this paper is to ensure structural safety during the construction of a reinforced concrete shelving structure plant.Based on sorting out the main influencing factors and controlling essentials of the construction safety risk of the regeneration of reinforced concrete shelving structure plant,this paper constructed the early warning index system of the construction safety risk of regeneration through the analysis of the construction safety simulation and monitoring content.The index system includes 5 first-level indicators,16 second-level indicators,and 45 quantitative indicators.After a comparison of early warning methods,this paper constructed a safety risk early warning model for the recycling and utilization of reinforced concrete shelving structure plants based on the improved Generalized Regression Neural Network(GRNN)and took several engineering projects as examples.First,we reduced the dimension of the sample data(data standardization processing)and analyzed the accuracy of the model.Through the iterative analysis of Quantum Particle Swarm Optimization(QPSO),we determined the optimal smoothing factor=0.08(the corresponding RMSE=0.0397,and the best Spread reference value was 0.8)and the optimal model.Finally,the sample data was imported into MATLAB R2014b,and then the trained network was used to give early warning to the test samples.The constructed model in this paper obtains single-factor risk and multi-factor risk early warning after data dimensionality reduction(feature principal element extraction).Compared with the actual situation,we can see that the single-factor security risk early warning process and results are consistent with the multi-factor security risk early warning process and results.Both of them are consistent with the actual safety risk state of the site,thus verifying the reliability of the model.The results show that the model is an organic combination of Kernel Principal Component Analysis(KPCA)-QPSO-GRNN,which provides a new way for quantitative research on the construction safety risk warning of the regeneration of reinforced concrete shelving structure plants.

safety engineeringshelving structureregeneration and utilizationconstruction safetyrisk early warning

裴兴旺、李文龙、刘怡君

展开 >

中天西北建设投资集团有限公司,西安 710065

北京建筑大学城市经济与管理学院,北京 100044

西安建筑科技大学土木工程学院,西安 710055

安全工程 排架结构 再生利用 施工安全 风险预警

国家自然科学基金

51808424

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(6)