首页|前馈神经网络在预测连续泄漏系数中的应用

前馈神经网络在预测连续泄漏系数中的应用

扫码查看
受泄漏孔几何参数、液位、液体物理特性及流动状态等因素影响,储罐连续泄漏系数难以直接采用流体力学建模求解。通过常压立式储罐连续泄漏试验获取数据样本,利用前馈神经网络(Feedforward Neural Network,FNN)算法构建连续泄漏系数(Cs)与输入变量间的非线性关系,建立基于前馈神经网络算法的Cs预测模型。模型性能评估结果表明,模型的平均绝对误差(EMA)、解释方差分(SEV)及决定系数(R2)分别为0。015 4、0。949 2及0。948 2,表明模型预测性能良好。与相应连续泄漏试验值比较,预测Cs的总平均绝对偏差范围为5。28%~7。34%,质量流率平均偏差为4。60%~6。51%,连续泄漏量的平均偏差为0。84%~2。03%,模型预测结果优于采用泄漏经验常数的计算结果,证明该模型可有效预测连续泄漏期间Cs值及变化趋势。
Application of feedforward neural network in prediction of continuous discharge coefficient
It is challenging to construct a continuous discharge coefficient model by using hydrodynamics when a storage tank discharges from a leakage hole continuously due to the complex interplay of multiple factors,such as leakage hole geometric parameters,liquid level,liquid physical properties,and flow state.This paper introduces a novel model to predict atmospheric storage tanks'continuous discharge coefficient(Cs)when atmospheric storage tanks continuously discharged,which utilizes the Feedforward Neural Network(FNN)algorithm and incorporates six input variables as liquid level above the leakage orifice(h),decreased velocity of liquid level(Vh),discharge time(t),equivalent diameter of orifice(d0),dynamic viscosity(m)and tank diameter(dT).Data samples are obtained by a series of continuous leakage experiments to construct a dataset,eighty percent of the dataset is allocated to a training set,and the remaining is set automatically as a testing set.The FNN algorithm is employed to establish the nonlinear relationship between Cs and its corresponding input variables.The model's evaluation performance reveals that the model's mean absolute error(EMA),explained variance score(SEV)and determination coefficient(R2)are 0.015 4,0.949 2,and 0.948 2,respectively,indicating that the prediction performance of the model is quite outstanding.When comparing with the corresponding experimental values of continuous discharge,it was shown that the mean absolute deviation of C.ranged from 0.06%to 15.40%,mean deviation of mass flow rate and continuous discharge mass ranged from 3.20%to 9.87%and 0.16%to 4.40%for the small-hole scenario,respectively;for the medium-hole scenario,mean absolute deviation of Cs ranges from 1.81%to 7.10%,mean deviation of mass flow rate and continuous discharge mass range from 2.06%to 6.95%and 0.29%to 1.37%,respectively.Therefore,the results calculated by C.outperformed those obtained by empirical constant,indicating that the proposed model can effectively predict values and trends of C.during continuous leakage.

safety engineeringcontinuous discharge from storage tankdischarge coefficientdeep learningFeedforward Neural Network(FNN)prediction model

何娟霞、黄丽文、蒋文豪、段青山

展开 >

广西大学资源环境与材料学院,南宁 530004

广西大学轻工与食品工程学院,南宁 530004

安全工程 储罐连续泄漏 泄漏系数 深度学习 前馈神经网络(FNN) 预测模型

广西科技厅重点研发项目(2023)广西大学博士科研启动基金国家自然科学基金广西自然科学基金

2022AB41008202200448120620012021GXNSFAA196077

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(6)