首页|基于箱线图与全卷积网络的动态场景烟雾检测

基于箱线图与全卷积网络的动态场景烟雾检测

扫码查看
烟雾具有透光性强、纹理模糊等特征,且易与云、雾等目标混淆,导致基于视频的单阶段烟雾检测网络识别准确率低且受环境干扰明显,难以满足实际现场的使用需求.针对上述问题,提出一种基于箱线图背景建模(Box Plot Background,BPB)与全卷积分类网络(Full Convulsion DNCNN,FCDN)的二阶段烟雾检测算法:一阶段使用箱线图统计方法剔除背景队列中的移动干扰目标,利用背景队列中的最大值与最小值建立能适应动态场景的背景模型,以减少一阶段动态背景误报和背景模型被污染带来的烟雾区域遗漏;二阶段使用卷积层替换全连接层,解决输入图像尺寸和形状的限制问题,提升火灾初期细长形烟雾的检出效率.试验显示,该算法在动态场景下的漏检率与误检率均明显降低,并显著提升了烟雾检测速度.
Dynamic scene smoke detection based on Box Plot and Fully Convolutional Network
Smoke has strong light transmission and blurry texture characteristics,and can be falsely detected as clouds and fog,leading to low recognition accuracy and substantial environmental interference of video-based single-stage smoke detection networks,posing challenges for actual field use.To address these issues,we develop a two-stage smoke detection algorithm based on Box Plot Background(BPB)and Full Convolution DNCNN(FCDN).In the first stage,we adopt a box plot statistical method to remove mobile interfering targets in the background queue and use maximum and minimum values in the background queue to establish a background model that is capable of adapting to dynamic scenes.In the second stage,we replace the fully connected layer with a convolutional layer to overcome input image size and shape limitations.The proposed two-stage smoke detection algorithm is tested on public datasets and self-collected data and demonstrated substantially reduced false detection rates.Using public camera data,the algorithm achieves a missed detection rate of 0.003 17,which is the lowest among the three methods in the experiment.The false detection rate achieves 58 and is comparable to the other two methods.The algorithm's Frames Per Second(FPS)outperforms the Gaussian mixture models and is slightly better than median filtering.In public smoke datasets and self-collected smoke datasets,the algorithm achieves the same missed detection rate as the other two methods,but significantly better false detection rates of 0.005 21 and 0.001 14,respectively.The algorithm's FPS remains the same as Gaussian mixture models(58)and median filtering(73).Together,the proposed two-stage smoke detection algorithm effectively minimizes the influence of environmental factors and significantly improves smoke detection accuracy.The experimental results demonstrate that the algorithm significantly reduces missed detection and false alarm rates.

safety engineeringsmoke detectiondynamic scenebox plotbackground modelingfully convolution networks

王文标、郝友维、时启衡

展开 >

大连海事大学船舶电气工程学院,辽宁大连 116026

安全工程 烟雾检测 动态场景 箱线图 背景建模 全卷积网络

国家自然科学基金

61973049

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(6)