首页|基于高通量监测数据的PMF源解析数据输入量研究

基于高通量监测数据的PMF源解析数据输入量研究

扫码查看
为探究数据输入量的变化对源解析结果的影响,以上海某工业区的大气重金属高通量监测数据为例,按不同数据量将监测数据分别输入至正定矩阵因子分解(Positive Matrix Factorization,PMF)模型中,通过考察模型中Q理论值(Qcheo)与Q计算值(Qtrue)的接近程度、源分类以及源贡献与研究区污染源分布特点的吻合情况,分析数据输入量对源解析结果的影响。结果显示:该区域大气重金属污染受工业生产主导(64。44%),其次是扬尘(19。60%)和交通运输(15。96%)。通过对数据量的考察,发现输入量为60-120时能够得出研究区域的污染源数量与贡献率,但考虑到测试成本、获取数据的时间,认为输入量为60-80时,也能得出合理的源解析结果。短期高通量的分钟级数据集,有益于PMF模型输出高精密度、高时效性的源解析结果,是解决应急污染监控的最佳手段。
Research on the PMF source apportionment input data quantity based on high-throughput monitoring data
To explore the impact of data input amount variation on source analysis results,the high throughput atmospheric heavy metal monitoring data collected by the automatic continuous monitoring ICP-MS equipped with a gas displacement device in an industrial zone in Shanghai were input into the Positive Matrix Factorization(PMF)model according to different data volumes.The influence of data volume on the source analysis results was analyzed by using the Similarity Level(Ls)of true Q value(Qtrue)and theoretical Q value(Qtheo),and the consistency of source classification and the contribution rates with the distribution characteristics of pollution sources in the study area.The results of Ls show that,as the amount of data gradually decreases,the reasonable number of factors reduces simultaneously.The optimal factor number decreased from 5 to 3 when the input data volume reduced from 120 to 35.In general,heavy metal pollution in the study area is dominated by industrial production(61.63%),followed by dust(20.58%)and transportation(17.79%).Of these 64.44%industrial sources,cable manufacturing sources(10.89%),and battery manufacturing sources(20.93%)can be identified separately by increasing the amount of data input to the PMF model.Through the investigation of PMF model input data quantity variation,it is found that optimal pollution source analysis result can be obtained when the data input amount is 60-120,when the data input falls within the range of 35-40,only three factors can be reasonably identified and distinguishing pollution sources became challenging.Considering reducing the monitor cost and the period of data acquisition,reasonable source analysis results can be obtained when the input volume is 60-80.The short-term and high-throughput minute-level data set is beneficial to the PMF model to output high-precision and time-efficient source analysis results and is the best means to solve emergency pollution monitoring.

environmental studiesatmospheric heavy metal pollutantshigh-throughput monitoring dataPositive Matrix Factorization(PMF)modeldata input quantity

牛明芬、商莹、王镜然、周强、陈欣、王颜红、柴美云

展开 >

沈阳建筑大学市政与环境工程学院,沈阳 110168

中国科学院沈阳应用生态研究所,沈阳 110016

上海磐合科学仪器股份有限公司,上海 201112

环境学 大气重金属污染物 高通量监测数据 正定矩阵因子分解(PMF)模型 数据输入量

国家重点研发计划政府间国际科技合作项目

2019YFE0122200

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(6)