首页|基于可解释性机器学习的建筑物物化阶段碳排放量预测研究

基于可解释性机器学习的建筑物物化阶段碳排放量预测研究

扫码查看
现有碳排放计算方法存在数据量大、计算繁琐和仅适用于事中、事后控制等问题,不利于设计人员在设计阶段进行碳减排工作.为此,研究将机器学习引入建筑物碳排放量计算领域,帮助设计人员在早期设计阶段获得建筑物物化阶段的碳排放信息,提供碳减排参考.首先,收集并建立建筑物物化阶段碳排放数据库;其次,基于5个建筑物特征,建立4种不同类型的机器学习模型,并根据评价指标对模型性能进行评价;最后,利用沙普利加和解释(Shapley Additive exPlanations,SHAP)和部分依赖图(Partial Depend ence Plot,PDP)验证最优模型应用的合理性,并深入挖掘各特征与碳排放之间的复杂关系,为建筑物碳减排提供新的信息.结果显示:各机器学习模型可以很好地预测建筑物物化阶段碳排放过程,其中建立的极度随机树(Extremely Randomized Trees,ET)模型对碳排放的预测表现最优;机器学习模型各特征对预测结果的影响与现有研究相似,表明了机器学习模型预测结果的可靠性与合理性;机器学习模型可以深入挖掘各特征与碳排放之间的复杂关系,为建筑物碳减排提供新的指导.
Interpretable machine learning-based carbon emission prediction in the materialization stage of buildings
Existing carbon emission calculation methods suffer from drawbacks such as excessive data requirements,complicated calculations,and applicability limited to after-action control,thereby not promoting carbon emission reduction work in the early design stage by designers.To mitigate these problems,machine learning is introduced in this paper for carbon emission calculations in buildings to help designers obtain carbon emission information at an early stage of the building design and provide reduction references.This paper has the following procedures:(1)collection and establishment of a database of carbon emissions in the materialization stage of buildings,and checking of the database quality through Mahalanobis distance;(2)establishment of four machine learning models,namely Extremely Randomized Trees(ET),eXtreme Gradient boosting,(XGboost),Multilayer Perceptron(MLP)and Support Vector Regression(SVR),based on five building characteristics,and evaluation of the model performance using three evaluation indices-R2,Mean Absolute Error(EMAE),and Root Mean Square Error(ERMSE).(3)using SHapley Additive ExPlanations(SHAP)and Partial Dependence Plot(PDP)to prove the appropriateness of applying the ET models,thereby exploring the complex relationships between each feature and carbon emission.The outcome provides new information for carbon emission reduction in buildings.The findings indicate that:(1)Each machine learning model can efficiently predict carbon emissions in buildings'physical phases.Among these,the ET model established in this paper exhibits the best performance with an R2 of 0.88,an ERMSE of 0.317 kt CO2,and an EMAE of 0.217 kt CO2.(2)Interpretable analyses of the ET model by SHAP and PDP show that the effects of the features of the ET model on the prediction results are similar to those of existing studies,which verifies the reliability and reasonableness of the prediction results of the machine learning model.(3)The impact of each feature on the carbon emission of the materialization stage of buildings is ranked from large to small,including the total building area,building height,footing area,seismic grade,and basement depth.(4)The nature of each feature's relationship with carbon emission is nonlinear,meaning that there is a positive correlation relationship between the increase in building height and the decrease of the footing area,both reducing the carbon emission in the chemical stage of buildings.The results of this paper can guide for carbon reduction in existing buildings.

environmental engineeringmaterialization stage of buildingcarbon emissionmachine learninginterpretability analysis

王志强、任金哥、韩硕、李文超

展开 >

青岛理工大学管理工程学院,山东青岛 266520

智慧城市建设管理研究中心(新型智库),山东青岛 266520

青岛理工大学建筑设计研究院,山东青岛 266520

环境工程学 建筑物物化阶段 碳排放 机器学习 可解释性分析

国家自然科学基金青岛理工大学人文社会科学研究基金

71471094Crw2023-006

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(6)