首页|负面舆情演化下的应急物资优化调度研究

负面舆情演化下的应急物资优化调度研究

扫码查看
在突发事件发生后,应急物资短缺及分配不均等问题会使灾民产生心理焦虑,负面情绪的释放会进一步发酵成为负面舆情,进而影响应急救援效果.首先,构建以降低负面舆情为主、兼顾公平和效率的应急物资调度模型;其次,提出相对重要度优先、最短路径优先及比例分配3种调度策略;然后设计多目标改进算法和多目标传统算法求解模型;最后,以2022年上海疫情为参考进行案例求解分析.结果表明:(1)考虑舆情演化的调度模型可更均衡地满足各灾区的应急物资需求,各地区物资满足率均达到75%以上,能有效减缓负面情绪;(2)传统多目标算法求解时间较短但物资满足率较低,多目标改进算法耗时较长但物资满足率均达到70%以上;(3)采用"相对重要性优先策略"救援效果较好,各地区物资满足率达90%以上,采用"按比例分配策略"在救援初期能有效降低舆情影响.
Investigation into optimal emergency material scheduling in response to evolving negative public opinion
After emergencies,shortages and unequal distribution of emergency supplies can induce psychological anxiety among victims,leading to the amplification of negative emotions,which in turn can escalate into negative public opinion.This phenomenon inevitably impacts the effectiveness of emergency rescue efforts.The article initiates by constructing an emergency material scheduling model that prioritizes mitigating negative public opinion while balancing fairness and efficiency considerations.Secondly,three scheduling strategies are proposed:relative importance priority,shortest path priority,and proportional allocation.Then,both a multi-objective improved algorithm and a multi-objective traditional algorithm are designed to address the model.Finally,a case analysis is conducted using the epidemic situation in Shanghai in 2022 as a reference point.After comparing the algorithms,the best one is selected,and different strategies are explored to assess their impact on the effectiveness of emergency rescue efforts.The findings indicate:(1)In contrast to the emergency material scheduling model that overlooks the evolving public sentiment,the model that incorporates public opinion evolution ensures a more equitable distribution of emergency resources among disaster-affected regions.As a result,the material satisfaction rate in each area exceeds 75%,significantly mitigating negative emotions associated with resource shortages.(2)The traditional multi-objective algorithm boasts a brief solution time,yet it exhibits a lower material satisfaction rate.The multi-objective improved algorithm,although requiring a longer processing time,achieves a material satisfaction rate exceeding 70%.Among them,the Multi-Objective Particle Swarm Optimization(MOPSO)algorithm in the multi-objective improved algorithm exhibits the best balance between solution time and material satisfaction rate.(3)The"relative importance priority strategy"demonstrates superior effectiveness in rescue operations,resulting in a material satisfaction rate of over 90%in each region.The"proportional allocation strategy"proves effective in mitigating the impact of public opinion during the initial stages of rescue operations.

public safetypublic opinion evolutionscheduling strategyoptimistic algorithmLangevin equation

段在鹏、俞思雅、杨泽鸿、郭进、王照阳

展开 >

福州大学经济与管理学院,福州 350108

福建省应急管理研究中心,福州 350108

福州大学环境与安全工程学院,福州 350108

公共安全 舆情演化 调度策略 优化算法 郎之万方程

国家社会科学基金项目

23BGL290

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(7)