首页|不平衡数据驱动的山区公路货车移动遮断险态跟驰行为识别模型

不平衡数据驱动的山区公路货车移动遮断险态跟驰行为识别模型

扫码查看
为识别山区双车道公路货车移动遮断下的小客车险态跟驰行为,基于无人机拍摄和视频轨迹提取技术提取车辆轨迹,利用人工少数类过采样法(Synthetic Minority Oversampling Technique,SMOTE)对不平衡轨迹数据过采样,并对驾驶行为聚类分析,将跟驰行为标定为危险和安全两种类别;依据紧迫跟驰、偏移过大和车速变化大三种险态跟驰行为诱因,确定险态跟驰行为风险测度(Measure of Driving Risk,MOR),包括碰撞时间倒数、相对横向偏移量和速度变异系数,并将MOR和聚类标定标签作为识别模型输入变量;通过轻量梯度提升机(Light Gradient Boosting Machine,LGBM)建立险态跟驰行为识别模型,再通过支持向量机(Support Vector Machines,SVM)、随机森林(Random Forest,RF)和自适应增强(Adaptive Boosting,AdaBoost)算法验证模型的有效性。以云南省某山区双车道公路为例进行试验,共提取543对小客车跟驰货车轨迹数据,数据预处理后筛选出467对有效跟驰数据;经过采样处理和聚类标定,结果表明:小客车跟驰货车时,超三成小客车处于险态跟驰状态;险态跟驰行为直道和弯道识别模型的精确率分别达95。49%和95。48%,其中LGBM表现最稳定,而RF和AdaBoost的稳定性较差且精确率不高。基于LGBM的险态跟驰行为识别模型具有较高的准确率和稳定性,在车路协同和自动驾驶等领域有应用前景。
Enhancing an unbalanced data-driven recognition model for identifying dangerous car-following behavior during truck movement interruptions
In this study,we aim to detect dangerous car-following behavior of passenger cars during truck movement interruptions on two-lane highways in mountainous areas.To achieve this,we utilize drone video and video trajectory extraction technology to extract vehicle trajectories.Additionally,we employ the Synthetic Minority Oversampling Technique(SMOTE)to address the issue of unbalanced trajectory data by oversampling.Furthermore,we leverage the K-means algorithm to cluster different driving behaviors,the car-following behavior is classified into two categories:dangerous and safe.To assess the risk,we select three triggers of dangerous car-following behavior:urgent following behavior,excessive offset,and speed variation behavior.We use three measures-countdown to Time-To-Collision,relative lateral offset,and velocity variation coefficient-as the Measure of Driving Risk(MOR).These MOR values,along with clustering calibration labels,are utilized as input variables for the recognition model.We establish a recognition model for identifying risky car-following behavior using the Light Gradient Boosting Machine(LGBM).Additionally,we validate the effectiveness of the model using other algorithms such as the Support Vector Machine(SVM),Random Forest(RF),and Adaptive Boosting(AdaBoost).Using a mountainous two-lane highway in Yunnan province as a case study,a total of 543 pairs of minibus trajectory data were extracted alongside truck data.Following data preprocessing,467 pairs of effective follow-up data were identified.After sampling processing and clustering calibration,the results revealed that over 30%of the passenger cars exhibited risky follow-up behavior when following trucks.Additionally,the accuracy rates for the straight and curved road recognition models for risky follow-up behavior were 95.49%and 95.48%,with recall rates of 96.93%and 95%,and F1 values of 96.20%and 95.24%,respectively.The performance of LGBM in both curved and straight road segments is more stable compared to SVM and RF,which exhibit poor stability and low accuracy rates.The LGBM-based dangerous car-following behavior recognition model demonstrates high accuracy,stability,and promising applications in cooperative vehicle infrastructure systems,automatic driving,etc.

safety engineeringdangerous car-following behavior recognitionLight Gradient Boosting Machine(LGBM)algorithmmountainous two-lane highwayunbalanced data

戢晓峰、薛唯、卢梦媛、覃文文、李太峰

展开 >

昆明理工大学交通工程学院,昆明 650504

云南省现代物流工程研究中心,昆明 650604

云南省公路路政管理总队(云南省综合交通发展中心),昆明 650031

安全工程 险态跟驰行为识别 轻量梯度提升机(LGBM)算法 山区双车道公路 不平衡数据

国家自然科学基金项目云南省交通运输厅科技创新及示范项目

520620242023-83二

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(8)