首页|露天矿无人机遥感边坡地表形变提取方法研究

露天矿无人机遥感边坡地表形变提取方法研究

扫码查看
针对当前露天矿边坡监测过程中存在的设备留有监测死角、点位布控缺乏依据、地质隐患解译困难、无人机(Unmanned Aerial Vehicle,UAV)影像点云重构复杂度高等问题,提出了一种基于无人机遥感的边坡地表形变提取方法。首先,通过分析UAV激光点云与影像特点构建点云序列;其次,利用融合尺度不变特征变换(Scale Invariant Feature Transform,SIFT)与圆柱形邻域搜索的改进迭代最近点(Iterative Closest Point,ICP)算法,实现点云序列的精准高效配准,提高边坡形变提取精度;最终,借助数字高程模型(Digital Elevation Model,DEM)叠加分析与可视化,精准定位边坡重点形变区域,直观提取边坡形变位置和大小,并结合正射影像图像特征进行形变区域分析与解译。以南芬露天矿为工程应用实例,研究表明:边坡形变模型标准偏差为0。032 m,对比全球定位系统-实时动态差分(Global Positioning System-Real Time Kinematic,GPS-RTK)实测形变值,形变中误差为0。012 m,能够快速实现大尺度复杂边坡地表扫描与形变提取,从而为地质灾害隐患分析、盲区边坡形变监测与地面监测设备科学布控提供技术支撑。
Study on extraction method of slope surface deformation in open-pit mine by UAV remote sensing
Given the challenges prevalent in slope monitoring within open-pit mines,including blind spot monitoring,insufficient criteria for control point positioning,complexities in geological hazard interpretation,and the intricacies of reconstructing point clouds from Unmanned Aerial Vehicle(UAV)images,we introduce a novel method for extracting slope surface deformations leveraging UAV remote sensing.Initially,we collected point cloud and image data of the slope at various intervals using a UAV equipped with onboard Light Detection and Ranging(LiDAR)and a camera.Subsequently,the acquired slope point cloud and image data underwent preprocessing and alignment to establish a unified coordinate system.Leveraging the strengths of both slope point cloud and image data,we synthesized a sequential point cloud dataset.Next,taking into account the distinct surface characteristics found in open-pit mines,we enhance the conventional Iterative Closest Point(ICP)algorithm by integrating the Scale Invariant Feature Transform(SIFT)and cylindrical neighborhood search algorithm.This augmentation facilitates the extraction,mapping,and precise registration of feature point pairs between point cloud sequences,thereby enhancing the accuracy and efficiency of slope deformation extraction.Lastly,employing a two-phase Digital Elevation Models(DEM)overlay analysis and visualization approach,we achieved precise localization of critical slope deformation areas.This facilitated intuitive extraction of slope deformation positions and sizes.Additionally,by integrating image features from the Digital Orthophoto Map(DOM),we conducted a comprehensive analysis and interpretation of the deformation region.To illustrate and evaluate our methodology,we applied it to the Nanfen open-pit mine as a case study.The findings indicate that the enhanced ICP algorithm significantly improves the registration accuracy of dual point cloud datasets.Furthermore,the standard deviation of the slope deformation model is measured at 0.032 m.Comparative analysis against deformation values obtained from Global Positioning System-Real Time Kinematic(GPS-RTK)reveals a median error of 0.012 m.Hence,the method enables rapid scanning and extraction of deformations across large-scale,intricate slope surfaces.This capability offers critical technical backing for geological hazard analysis,monitoring deformations in blind spots,and strategically deploying ground monitoring apparatus.

safety engineeringopen-pit slopeUnmanned Aerial Vehicle(UAV)remote sensingpoint cloud sequencepoint cloud registrationsurface deformation extraction

刘光伟、袁杰、柴森霖、李渊博、付恩三

展开 >

辽宁工程技术大学鄂尔多斯研究院,内蒙古鄂尔多斯 017010

辽宁工程技术大学矿业学院,辽宁阜新 123000

应急管理部信息研究院,北京 100029

安全工程 露天矿边坡 无人机(UAV)遥感 点云序列 点云配准 地表形变提取

国家自然科学基金项目国家自然科学基金项目辽宁工程技术大学鄂尔多斯研究院校地科技合作培育项目

5237412352204158YJY-XD-2023-006

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(9)