首页|结合CNN-LSTM优化模型在尾矿坝浸润线预测中的应用

结合CNN-LSTM优化模型在尾矿坝浸润线预测中的应用

扫码查看
浸润线是尾矿库的生命线,准确地预测浸润线仍是目前较难解决的重要课题。为了能够有效地预测尾矿坝浸润线的演变态势,提出了一种适用于尾矿坝浸润线预测的高精度卷积神经网络-长短期记忆(Convolutional Neural Network-Long Short-Term Memory,CNN-LSTM)网络优化模型。以云南省某铜矿尾矿库为研究对象,运用CNN提取浸润线数据在高维空间的联系,并捕捉浸润线时序特性的空间关联特征,运用LSTM捕捉及解析其长期依赖关系的特点,优化CNN的卷积层层数与LSTM隐含层层数,选取最优组合,实现对浸润线变化趋势的精确预测。试验结果表明:与单一的CNN模型和LSTM模型相比,CNN-LSTM优化模型的收敛速度快,泛化能力强,且该模型的决定系数、平均绝对误差、均方误差、平均绝对百分比误差、均方根误差均达到了非常高的拟合优度及预测精度,显示了基于CNN-LSTM优化模型进行尾矿坝浸润线预测的优越性,为保障尾矿库长期安全运行提供依据。
Application of CNN-LSTM optimization model in predicting tailing dam saturation lines
The saturation line plays a vital role in maintaining the operational stability of tailings dams.However,accurately predicting its evolution remains a significant and challenging task.To address this issue effectively,this paper proposes a high-precision Convolutional Neural Network-Long Short-Term Memory(CNN-LSTM)optimization model specifically designed for predicting the saturation line of tailings dams.The paper focuses on a copper mine tailing pond in Yunnan Province as the research subject.It extracts saturation line data from various monitoring points on the tailings dam.Initially,CNN is employed to capture the interdependencies among saturation line data points in high-dimensional space.Subsequently,convolution and pooling operations are used to input spatial correlation features of the saturation line's temporal characteristics into the LSTM layer.Secondly,leveraging LSTM's ability to capture and model long-term dependencies,the model selectively stores and manages the CNN-extracted features,ensuring both short-term and long-term memory of the saturation line's temporal characteristics.Secondly,LSTM is utilized to capture and analyze long-term dependencies within the features extracted by CNN,enabling selective storage and management of both short-term and long-term memory.During computation,the optimal combination of CNN convolutional layers and LSTM hidden layers is optimized to achieve accurate prediction of the saturation line trend.The experimental results demonstrate that the model exhibits rapid convergence and robust generalization capabilities compared to single CNN and LSTM models.The determination coefficient,average absolute error,mean square error,average absolute percentage error,and root mean square error of the prediction model achieved exceptionally high levels of fitting accuracy and prediction precision.This demonstrates the superiority of the CNN-LSTM optimization model in predicting the saturation line of tailings dams,providing a crucial foundation for ensuring the long-term safe operation of tailings ponds.

safety engineeringtailings damConvolutional Neural Network(CNN)Long Short-Term Memory(LSTM)predictions of saturation line

袁利伟、杨柳、何涛、李延林、魏学松、徐海燕

展开 >

昆明理工大学公共安全与应急管理学院,昆明 650093

开远市应急管理局,云南开远 661600

永善金沙矿业有限责任公司,云南昭通 657000

昆明理工大学设计研究院,昆明 650093

展开 >

安全工程 尾矿坝 卷积神经网络(CNN) 长短期记忆(LSTM) 浸润线预测

国家自然科学基金项目

53264020

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(10)
  • 10