首页|受限计算环境下的化工实验室安全检测模型

受限计算环境下的化工实验室安全检测模型

扫码查看
为了利用人工智能和目标检测技术实现对化工实验室的智能安全防控,提出了基于改进YOLOv8的化工实验室安全检测模型,旨在检测试验人员不规范行为和异常目标。首先,利用分组混洗卷积(Group Shuffle Convolution,GSConv)重构YOLOv8的C2f结构和特征融合部分的下采样模块,降低模型的参数量与计算量;其次,设计基于分组卷积的轻量化检测头替换原有检测头,进一步降低计算复杂度;最后,构建面向化工实验室安全检测的图像数据集,用于训练模型。试验结果表明,经过改进的模型在不牺牲过多检测精度的情况下,参数量和计算量分别降低了48%和54%。改进模型在性能和轻量化之间取得了良好的平衡,不仅适用于在计算资源受限的化工实验室环境下部署,也具有在其他需要轻便高效安全监控的场景中广泛应用的潜力。
Enhancing safety detection model for chemical laboratories in constrained computing environments
To achieve intelligent safety prevention and control in chemical laboratories using artificial intelligence and object detection technology,we propose an enhanced object detection model.This model,based on the improved YOLOv8 architecture,aims to detect irregular behavior of laboratory personnel and abnormal laboratory conditions.The conventional object detection models are known for their complexity and high computational demands,which pose challenges for typical chemical laboratories.Therefore,we have opted for the YOLOv8n model,a smaller-scale solution,and implemented lightweight enhancements.Specifically,we utilized Group Shuffle Convolution(GSConv)to reconstruct the C2f structure of YOLOv8 and the downsampling module in the feature fusion section.These modifications aim to decrease the model's parameter size and computational complexity,ensuring efficient performance in constrained computing environments.This enhances the computational efficiency and inference speed of the model,thus better meeting the real-time requirements for safety detection in chemical laboratory scenarios.Additionally,we designed a lightweight detection head based on group convolution to replace the original detection head of the YOLOv8 network,further reducing computational complexity while maintaining the model's detection performance.Due to the scarcity of safety detection datasets tailored specifically for chemical laboratory scenarios,we collected numerous images depicting abnormal situations and unsafe behaviors of laboratory personnel through online sourcing and on-site photography.These images underwent detailed annotation using labeling software,particularly LabelImg.Subsequently,we curated a specialized safety detection image dataset designed specifically for chemical laboratory settings,which was then utilized for training our model.We conducted ablation experiments on the enhanced modules within the same experimental environment.The results demonstrated that our improved model achieved a 48%reduction in parameter size and a 54%decrease in computational complexity,all while maintaining high detection accuracy.With a size of approximately 3 MB,our enhanced model achieved a precision of around 80%,striking an optimal balance between performance and lightweight design,making it highly suitable for deployment in resource-constrained environments.Our research contributes new insights into intelligent safety prevention and control in chemical laboratories and provides a reference dataset.Furthermore,our improved model demonstrates broad application prospects in other scenarios requiring lightweight and efficient security monitoring.

safety engineeringchemical laboratoryobject detectionlightweightYOLOv8

许云峰、雷海龙、韩永辉、崔建升

展开 >

河北科技大学信息科学与工程学院,石家庄 050018

河北科技大学环境科学与工程学院,石家庄 050018

河北省固体废弃物资源化技术创新中心,石家庄 050018

安全工程 化工实验室 目标检测 轻量化 YOLOv8

河北省重点研发计划项目教育部人工智能协同育人项目

21373802D201801003011

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(10)
  • 4