首页|生物质灰软化温度预测模型构建及应用研究

生物质灰软化温度预测模型构建及应用研究

扫码查看
生物质灰的软化温度可以反映锅炉结渣效率与传热效率,因此建立生物质灰软化温度的预测模型能够更好地探究生物质锅炉结渣规律。研究基于反向传播(Back Propagation,BP)神经网络与Elman神经网络建立了生物质灰软化温度预测模型。首先,收集各生物质灰中氧化物的质量分数与灰软化温度并作为原始数据集,确定模型的训练参数;其次,对模型进行测试;最后,对模型的适应性进行评价。研究对比分析了BP神经网络与Elman神经网络的决定系数R2、均方误差根ERMS、平均绝对误差EMA以及平均绝对百分比误差EMAP。之后,使用实验室制取的杨木灰样对Elman网络预测模型进行了验证。研究结果显示,Elman神经网络针对生物质灰软化温度具有更好的预测效果,其预测软化温度与实际软化温度的相对误差不超过20%,预测效果较好。
Study on neural network-based prediction model for biomass ash softening temperature
The softening temperature of biomass ash serves as an indicator of boiler slagging and heat transfer efficiency.Therefore,establishing a predictive model for the softening temperature of biomass ash can contribute to a better understanding of the slagging characteristics in biomass boilers.This paper presents the development of a prediction model for biomass ash softening temperature,leveraging the Back Propagation neural network and Elman neural network.Firstly,the original dataset comprised the mass fraction of oxide in biomass ash and its corresponding softening temperature.This dataset was utilized to establish the training parameters for the model.Subsequently,the model underwent rigorous testing.Finally,an evaluation of the model's adaptability was conducted,wherein the determination coefficient(R2),Root Mean Square Error(ERMS),Mean Absolute Error(EMA),and Mean Absolute Percentage Error(EMAP)of both the BP neural network and the Elman neural network were compared and analyzed.Subsequently,the Elman network prediction model was validated using laboratory-obtained poplar ash samples.The results indicate that for the test set data,the R2 values of the softening temperature prediction models for biomass ash using both the BP neural network and Elman neural network are 0.998 87 and 0.999 96,respectively.Additionally,the Elman neural network model exhibits smaller values for ERMS,EMA and EMAP.The Elman neural network demonstrates superior predictive capabilities for the softening temperature of biomass ash.Specifically,at residence times of 2 h and ash formation temperatures of 600 ℃,800 ℃,and 1 000℃,the relative error of the Elman neural network in predicting the softening temperature of poplar ash remains below 20%,indicating a robust predictive performance.This study delves into the correlation between seven components of biomass ash and softening temperature,providing valuable insights for establishing prediction models and achieving accurate predictions of the softening temperature of biomass ash.

safety engineeringbiomass ashsoftening temperatureneural network forecasting

姚锡文、张玲玉、许开立、齐洋

展开 >

东北大学资源与土木工程学院,沈阳 110819

安全工程 生物质灰 软化温度 神经网络预测

国家自然科学基金项目国家重点研发计划资助项目

520040552021YFC3001300

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(10)
  • 11