首页|多变量联合模型在隧道通风系统寿命预测中的应用研究

多变量联合模型在隧道通风系统寿命预测中的应用研究

扫码查看
为了提高隧道通风系统的智能运维水平,将基于数据驱动的联合模型引入隧道通风系统进行剩余使用寿命(Remaining Useful Life,RUL)预测,即综合失效事件和状态监测数据进行RUL动态预测。针对基于失效事件和状态监测数据融合的RUL预测,目前工业领域主要使用两阶段模型法,该方法遵循"先退化建模,后失效建模"的步骤。由于隧道通风系统受到地铁工况环境的影响,退化过程和失效事件存在相互影响,提出了基于多元变量的联合模型,旨在辨识共享随机效应,进而降低退化模型和失效模型估计偏差,提高隧道通风系统RUL动态预测的准确度。基于调研发现,地铁隧道通风系统主要故障模式为风机轴承磨损,研究主要通过风机轴承磨损失效仿真算例,选用平均绝对误差比较所提出的方法与两阶段法、单元联合模型的预测性能。算例研究结果表明,多元联合模型方法能有效辨识出监测状态演变和失效事件的关联关系,降低模型估计的偏差,为地铁隧道安全运行提供决策支持。
Application of multivariate joint model in life prediction of tunnel ventilation system
In this paper,we propose a data-driven multivariate joint model for predicting the Remaining Useful Life(RUL)of tunnel ventilation systems.By taking into account the variability in the monitoring process and the impact of environmental conditions,we conduct a joint analysis of multivariate monitoring data and failure data to identify shared random effects.This approach allows for the simultaneous estimation of parameters for the degradation rate model and the failure rate model,thereby reducing estimation bias and enhancing the accuracy of RUL prediction for tunnel ventilation systems.This methodology results in a significant improvement in the accuracy of dynamic RUL prediction.This study primarily utilizes a simulated fan bearing wear failure example to compare the prediction performance of our proposed method with the two-stage method and the unit joint model,using the average absolute error as the comparison metric,to assess the prediction accuracy of the model,the leave-one-out cross-validation method is employed.The bearing dataset is partitioned into a training set comprising 99 groups and a test set with 1 group.This process is repeated for each group within the dataset,rotating between designating a group as the test set and using the remaining groups as the training set.By systematically allowing each group of wind turbine bearing data to serve as the test set,we ensure a thorough evaluation of the model's performance and predictive capabilities.Upon analyzing the results of the computational study,it is evident that the prediction accuracy of the multivariate joint model surpasses that of the traditional two-stage method,highlighting its superior predictive performance.Furthermore,in the advanced stages of prediction,this model demonstrates higher accuracy in lifespan prediction compared to the unit joint model,showcasing a marginally improved predictive performance over the unit joint model.As the amount of available data increases,the prediction accuracy steadily improves,thereby confirming the efficacy of the model.The multivariate joint modeling approach adeptly identifies correlations between the evolution of monitoring states and occurrence of failure events.By minimizing estimation errors and enhancing accuracy,this method offers valuable decision support for ensuring the safe operation of subway tunnels.

safety engineeringtunnel ventilation systemjoint modeldegradation modelfailure modelrandom effect

雷崇、冯腾、夏继豪、钱新博、孙言俊、姜学鹏、李科、严斌

展开 >

中铁第四勘察设计院集团有限公司,武汉 430060

武汉科技大学机械自动化学院,武汉 430081

长沙市轨道交通建设有限责任公司,长沙 410027

安全工程 隧道通风系统 联合模型 退化模型 失效模型 随机效应

国家重点研发计划重点专项湖北省教育厅科学技术研究计划重点项目

2021YFB2011200D20221105

2024

安全与环境学报
北京理工大学 中国环境科学学会 中国职业安全健康协会

安全与环境学报

CSTPCD北大核心
影响因子:0.943
ISSN:1009-6094
年,卷(期):2024.24(10)
  • 7